|
|
| Line 10: |
Line 10: |
| | :<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br> | | :<math>\square^2_rG(r,r')=\delta^4(r-r')</math><br> |
| | and its Fourier transform | | and its Fourier transform |
| − | :<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r e^{-iq\cdot r} G(r,0)</math> | + | :<math> \tilde{G} (q) = \frac{1}{(2\pi)^2} \int d^4r\, e^{-iq\cdot r} G(r,0)</math> |
| − | :<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4qe^{iq\cdot r} \tilde{G}(q)</math><br> | + | :<math> G(r,0)=\frac{1}{(2\pi)^2} \int d^4q\, e^{iq\cdot r} \tilde{G}(q)</math><br> |
| | Translational symmetry implies | | Translational symmetry implies |
| − | :<math>G(r-r',0)=G(r,r')</math> | + | :<math>G(r-r',0)=G(r,r')\quad</math> |
| − | ∴<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q e^{iq\cdot (r-r')} \tilde{G} (q)</math><br> <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}\tilde{G}(q)</math><br><br>
| + | so that |
| − | <math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4qe^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})</math>, where <math>q=(\mathbf{k},\frac{\omega}{c}) \quad</math><br><br> | + | :<math> G(r,r')=\frac{1}{(2\pi)^2}\int d^4q\, e^{iq\cdot (r-r')} \tilde{G} (q)</math><br> |
| − | But, <math>\square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q e^{iq\cdot (r-r')}</math><br><br>
| + | :<math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\,(-q^2)e^{iq\cdot (r-r')}\tilde{G}(q)</math><br> |
| − | ∴<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br><br>
| + | :<math>\square^2_rG(r,r')=\frac{1}{(2\pi)^2}\int d^4q\, e^{iq\cdot (r-r')}(-k^2+\frac{\omega^2}{c^2})</math> |
| − | <math>G(r,r')=\frac{-1}{(2\pi)^4} \int d^4qe^{iq\cdot (r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}</math><br><br> | + | where <math>q=(\mathbf{k},\frac{\omega}{c})</math>. But |
| − | Chose the "retarded" solution, such that the function is zero unless t>t'<br><br> | + | :<math>\square^2_rG(r,r')=\delta^4(r-r')=\frac{1}{(2\pi)^4}\int d^4q\, e^{iq\cdot (r-r')}</math><br> |
| − | <math>G(r,r')=\frac{1}{(2\pi)^4}\int d^3ke^{i\mathbf{k}\cdot (r-r')}\int d(\frac{\omega}{c}) \frac{e^{-i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta(t-t')</math><br><br> | + | :<math>\tilde{G}(q)=\frac{(2\pi)^2}{(2\pi)^4}\frac{1}{-q^2}= \frac{-1}{(2\pi)^2q^2}</math><br> |
| − | <math>=\frac{1}{(2\pi)^4}\int d^3ke^{i\mathbf{k}\cdot (r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta</math><br><br> | + | :<math>G(r,r')=\frac{-1}{(2\pi)^4} \int d^4q\, e^{iq\cdot (r-r')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}</math><br> |
| − | <math>=\frac{-2\pi}{(2\pi)^4}\int_0 \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-1}^1 dze^{ik|\mathbf{r}-\mathbf{r'}|z}\Theta</math><br><br> | + | Chose the "retarded" solution, such that the function is zero unless t>t'.<br> |
| − | <math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> | + | :<math>G(r,r')=\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}\int d(\frac{\omega}{c}) \frac{e^{-i\omega(t-t')}}{(\frac{\omega}{c}-k)(\frac{\omega}{c}+k)}\Theta(t-t')</math><br><br> |
| − | <math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br><br> | + | ::<math>=\frac{1}{(2\pi)^4}\int d^3k\, e^{i\mathbf{k}\cdot (r-r')}(2\pi i \frac{e^{ick(t-t')}-e^{-ick(t-t')}}{2k})\Theta</math><br><br> |
| − | But the term <math>\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math><br><br> | + | ::<math>=\frac{-2\pi}{(2\pi)^4}\int_0 \frac{k^2dk}{k} \sin\left({ck(t-t')}\right) 2\pi\int_{-1}^1 dze^{ik|\mathbf{r}-\mathbf{r'}|z}\Theta</math><br><br> |
| − | ∴<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br><br>
| + | ::<math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> |
| − | Now to get the <math>G_1(r,r')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> r_3=z=0 \quad</math> we take the difference:<br><br> | + | ::<math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br> |
| − | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|}\right)</math><br><br> | + | |
| − | Now use Green's theorem:<br><br> | + | But the term <math>\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math> so that |
| − | Let <math>F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)</math><br><br>
| + | :<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br> |
| | + | |
| | + | Now to get the <math>G_1(r,r')\quad </math> in the half-space with z>0 with the boundary condition <math>G_1\quad </math> at<math> r_3=z=0 \quad</math> we take the difference:<br><br> |
| | + | :<math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'+2z'\hat{e_3}|}\right)</math><br><br> |
| | + | Now use Green's theorem, with the generating function |
| | + | :<math>F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)</math><br><br> |
| | <math>\int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]</math><br><br> | | <math>\int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]</math><br><br> |
| − | But <math>\part_\mu \part^\mu G_1(r,r')=\delta^4(r-r')</math><br><br>
| + | :<math>\part_\mu \part^\mu G_1(r,r')=\delta^4(r-r')</math><br><br> |
| | <math>\part_\mu \part^\mu A(r)= \mu j(r)</math>, let <math>j(r)=0 \quad</math><br><br> | | <math>\part_\mu \part^\mu A(r)= \mu j(r)</math>, let <math>j(r)=0 \quad</math><br><br> |
| | <math>\int \part_\mu F_\mu d^4r=A(r')</math><br><br> | | <math>\int \part_\mu F_\mu d^4r=A(r')</math><br><br> |
We start off with Maxwell's Equation in the Lorentz gauge:

where we use the metric signature (+,+,+,-) and



The gauge condition for the Lorentz gauge is

Introduce the Green's function at
from some impulse source at

and its Fourier transform


Translational symmetry implies

so that



where
. But



Chose the "retarded" solution, such that the function is zero unless t>t'.




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {r} -\mathbf {r} '|}}{\frac {2\pi }{4}}\left[\delta (|\mathbf {r} -\mathbf {r} '|+c(t-t'))-\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/48541628af99cf28e2d003864682e6565eaa5915)
But the term
so that

Now to get the
in the half-space with z>0 with the boundary condition
at
we take the difference:

Now use Green's theorem, with the generating function

![{\displaystyle \int \partial _{\mu }F_{\mu }d^{4}r=\int cdt\int d^{3}r[\partial _{\mu }A\partial ^{\mu }G+A\partial _{\mu }\partial ^{\mu }G_{1}-\partial _{\mu }G\partial ^{\mu }A-G_{1}\partial _{\mu }\partial ^{\mu }A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c807a3acf6af188a25a7f51900bfbaecacfcd486)

, let 

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the condition of

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
, where 

∴ 
At
, 
If
is independent of position, as in a plane wave propagating along the z axis, then:

This gives us uniform translation of waves at velocity c. More generally:



In our case, we consider only those waves which drop off as
, so:


In cylindrical coordinates,
. Also,
. So:

Special Case
Picture an opaque screen with a circular aperture of radius a.
Let
Then 

