|
|
| Line 28: |
Line 28: |
| | ::<math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> | | ::<math>=\frac{-1}{(2\pi)^2}\left(\frac{1}{|\mathbf{r}-\mathbf{r'|}}\right)2\int_0 dk \sin(ck(t-t')) \sin(k|\mathbf{r}-\mathbf{r'}|)\Theta</math><br><br> |
| | ::<math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br> | | ::<math>=\frac{1}{(2\pi)^2}\frac{2}{|\mathbf{r}-\mathbf{r}'|}\frac{2\pi}{4} \left[\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))-\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))\right]\Theta</math><br> |
| − | | + | <br> |
| | But the term <math>\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math> so that | | But the term <math>\delta(|\mathbf{r}-\mathbf{r}'|+c(t-t'))\rightarrow 0 \quad\forall\quad t>t'</math> so that |
| | :<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br> | | :<math> G(r,r')=\frac{-1}{4\pi}\quad \frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}</math><br> |
| Line 36: |
Line 36: |
| | Now use Green's theorem, with the generating function | | Now use Green's theorem, with the generating function |
| | :<math>F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)</math><br><br> | | :<math>F^\mu=A(r)\part_\mu G_1(r,r')-G_1(r,r')\part_\mu A(r)</math><br><br> |
| − | <math>\int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]</math><br><br> | + | :<math>\int \part_\mu F_\mu d^4r= \int cdt \int d^3r[\part_\mu A \part^\mu G+A\part_\mu \part^\mu G_1-\part_\mu G \part^\mu A -G_1\part_\mu \part^\mu A]</math><br><br> |
| | :<math>\part_\mu \part^\mu G_1(r,r')=\delta^4(r-r')</math><br><br> | | :<math>\part_\mu \part^\mu G_1(r,r')=\delta^4(r-r')</math><br><br> |
| − | <math>\part_\mu \part^\mu A(r)= \mu j(r)</math>, let <math>j(r)=0 \quad</math><br><br> | + | :<math>\part_\mu \part^\mu A(r)= \mu j(r)</math>, let <math>j(r)=0 \quad</math><br><br> |
| − | <math>\int \part_\mu F_\mu d^4r=A(r')</math><br><br> | + | :<math>\int \part_\mu F_\mu d^4r=A(r')</math><br><br> |
| | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> | | Now invoke the divergence theorem on the half space <math>z>0 \quad</math>:<br><br> |
| − | <math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part z}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the condition of<math>G_1(z=0,r')=0 \quad</math><br><br> | + | :<math>A(r')=-\int d^2r\int cdt\left[A(r)\frac{\part}{\part z}G_1(r,r')-G_1(r,r')\frac{\part}{\part z}A(r)\right]</math>, where the last term is zero by the condition of<math>G_1(z=0,r')=0 \quad</math><br><br> |
| − | <math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br> | + | :<math>A(r')=-c\int dt\int d^2rA(r)\frac{\part}{\part z}G_1(r,r')</math><br><br> |
| | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> | | To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation: <br><br><br> |
| − | <math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math>, where <math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br> | + | :<math>G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)</math>, where :<math>\mathbf{r}''=\mathbf{r}'-2z'\hat{e_3}</math><br><br> |
| − | <math>\frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br> | + | :<math>\frac{\part}{\part z}G_1(r,r')=\frac{-1}{4\pi}\left(\frac{\part}{\part z}\left(\frac{\delta(|\mathbf{r}-\mathbf{r}'|-c(t-t'))}{|\mathbf{r}-\mathbf{r}'|}-\frac{\delta(|\mathbf{r}-\mathbf{r}''|-c(t-t'))}{|\mathbf{r}-\mathbf{r}''|}\right)\right)</math><br><br> |
| | ∴ <math>A(r')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2r\left(2\frac{A(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> | | ∴ <math>A(r')=\frac{-1}{4\pi}\frac{\part}{\part z'}\int_{z=0} d^2r\left(2\frac{A(\mathbf{r},t'-\frac{|\mathbf{r}-\mathbf{r}'|}{c})}{|\mathbf{r}-\mathbf{r}'|}\right)</math><br><br> |
| | At <math>z=0 \quad </math>, <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> | | At <math>z=0 \quad </math>, <math>|\mathbf{r}-\mathbf{r}'|=\sqrt{r^2+z'^2}=S, dS=\frac{rdr}{\sqrt{r^2+z'^2}}</math><br><br> |
We start off with Maxwell's Equation in the Lorentz gauge:

where we use the metric signature (+,+,+,-) and



The gauge condition for the Lorentz gauge is

Introduce the Green's function at
from some impulse source at

and its Fourier transform


Translational symmetry implies

so that



where
. But



Chose the "retarded" solution, such that the function is zero unless t>t'.




![{\displaystyle ={\frac {1}{(2\pi )^{2}}}{\frac {2}{|\mathbf {r} -\mathbf {r} '|}}{\frac {2\pi }{4}}\left[\delta (|\mathbf {r} -\mathbf {r} '|+c(t-t'))-\delta (|\mathbf {r} -\mathbf {r} '|-c(t-t'))\right]\Theta }](https://wikimedia.org/api/rest_v1/media/math/render/svg/48541628af99cf28e2d003864682e6565eaa5915)
But the term
so that

Now to get the
in the half-space with z>0 with the boundary condition
at
we take the difference:

Now use Green's theorem, with the generating function

![{\displaystyle \int \partial _{\mu }F_{\mu }d^{4}r=\int cdt\int d^{3}r[\partial _{\mu }A\partial ^{\mu }G+A\partial _{\mu }\partial ^{\mu }G_{1}-\partial _{\mu }G\partial ^{\mu }A-G_{1}\partial _{\mu }\partial ^{\mu }A]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c807a3acf6af188a25a7f51900bfbaecacfcd486)

, let 

Now invoke the divergence theorem on the half space
:
, where the last term is zero by the condition of

To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:
, where :

∴ 
At
, 
If
is independent of position, as in a plane wave propagating along the z axis, then:

This gives us uniform translation of waves at velocity c. More generally:



In our case, we consider only those waves which drop off as
, so:


In cylindrical coordinates,
. Also,
. So:

Special Case
Picture an opaque screen with a circular aperture of radius a.
Let
Then 

