Difference between revisions of "Maxwell's Equations"
Jump to navigation
Jump to search
| Line 13: | Line 13: | ||
|Ampere's Law: | |Ampere's Law: | ||
|- | |- | ||
| − | |<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> | + | |width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> |
| − | |<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math> | + | |width="400"|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math> |
|} | |} | ||
Revision as of 15:45, 21 March 2007
In Free Space
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
| Gauss' Law: | Gauss' Law for Magnetism: |
| Faradays's Law: | Ampere's Law: |
In the presence of charges and dielectric media
Need to add possibly derivation of wave equation and definitely Maxwell's equation in presence. Need also to introduce D and H and relate them to E and B.
Gauss' Law:
Gauss' Law for Magnetism:
Faradays's Law:
Ampere's Law: