Construction of a Tabletop Michelson Interferometer

From UConn PAN
Jump to navigation Jump to search

Determining Angle for First Diffraction Minimum

We start off with Maxwell's Equation in the Lorentz gauge:

Where:

Lorentz Gauge:

Introduce Green's function at (x=t) from some impulse source at x'=(x',t')



Let

Then

In free space, translational symmetry implies:






, where
But,


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,x')=\frac{-1}{(2\pi)^4} \int d^4qe^{-iq(x-x')} \frac{1}{(k+\frac{\omega}{c})(k-\frac{\omega}{c})}}
Chose the "retarded" solution, such that the function is zero unless t>t'










But the term



Now to get the in the half-space with z>0 with the boundary condition at we take the difference:



Now use Green's theorem:

Let



But

, let



The last term vanishes if fall off sufficiently fast at . They do. So:



Now invoke the divergence theorem on the half space :

, where the last term is zero by the constriction of



To do the t integral, I need to bring out the z derivative. To do this, I first turn it into a z' derivative, using the relation:


, where





At ,

If is independent of , then:



This gives us uniform translation of waves at velocity c. More generally: