Difference between revisions of "Error propagation in Amplitude Analysis"

From UConn PAN
Jump to navigation Jump to search
(Created page with 'The following is a review of error propagation needed in amplitude analysis. Consider a Monte-Carlo (MC) integral over the intensities of N detected events out of N<sub>gen</su…')
 
m
Line 44: Line 44:
 
&sigma;<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples,  
 
&sigma;<sub>i</sub>=1. An integral over such events is then a weighted sum of such samples,  
 
having therefore a contribution to the variance:
 
having therefore a contribution to the variance:
 +
 
<math>
 
<math>
 
\sigma_{MC}^2=
 
\sigma_{MC}^2=
Line 59: Line 60:
 
     \sum_{\alpha,\beta,\alpha',\beta'}^n{
 
     \sum_{\alpha,\beta,\alpha',\beta'}^n{
 
       u_\alpha u_\beta^* u_{\alpha'} u_{\beta'}^*  
 
       u_\alpha u_\beta^* u_{\alpha'} u_{\beta'}^*  
       \frac{1}{N_{gen}^2} \sum_i^N{
+
       \left[ \frac{1}{N_{gen}^2} \sum_i^N{
 
         A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i)  
 
         A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i)  
 
         A_{\alpha'}^{\gamma' \delta'}(x_i) A_{\beta'}^{\gamma' \delta' *}(x_i)  
 
         A_{\alpha'}^{\gamma' \delta'}(x_i) A_{\beta'}^{\gamma' \delta' *}(x_i)  
 
       }
 
       }
 +
      \right]
 
     }
 
     }
 
   }
 
   }
 +
</math>
 +
 +
The relevant piece to pre-compute over the event set for error calculation is shown in brackets.
 +
Turning our attention now to the contribution to error on the production parameters ''u'':
 +
 +
<math>
 +
\sigma_{fit}^2=
 +
\sum_{k,l}^n{ \sigma_{u_k}\sigma_{u_l}
 +
  \frac{\partial}{\partial u_k}\left(
 +
  \sum_{\gamma,\delta}{\rho_{\gamma\delta}
 +
    \sum_{\alpha,\beta}^n{
 +
      u_\alpha u_\beta^*
 +
      \left[ \frac{1}{N_{gen}}\sum_i^N{
 +
        A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i)
 +
      }
 +
      \right]
 +
    }
 +
  }
 +
  \right)
 +
  \frac{\partial}{\partial u_l}
 +
  \sum_{\gamma,\delta}{\rho_{\gamma\delta}
 +
    \sum_{\alpha,\beta}^n{
 +
      u_\alpha u_\beta^*
 +
      \left[ \frac{1}{N_{gen}}\sum_i^N{
 +
        A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i)
 +
      }
 +
      \right]
 +
    }
 +
  }
 +
  \right)
 +
}
 +
 
</math>
 
</math>

Revision as of 01:42, 22 November 2011

The following is a review of error propagation needed in amplitude analysis.

Consider a Monte-Carlo (MC) integral over the intensities of N detected events out of Ngen generated.

where we take n coherent amplitudes and allow incoherent sums indexed by γ, δ to allow for applications like spin-density matrices (ρ). When amplitude analysis fits contain amplitudes with not free parameters, it is convenient to rearrange the summations above, to pre-compute the sum over the intensities of the events:

storing the term in square brackets, a matrix indexed by α,β, for contractions with varying free production parameters u in the course of a fit.

When considering the uncertainty on the overall integral, both the errors on u parameters and those from the finite MC set of events will contribute. A single detected event (i) can be viewed as one sample of a Poisson process, having therefore an uncertainty of σi=1. An integral over such events is then a weighted sum of such samples, having therefore a contribution to the variance:

The relevant piece to pre-compute over the event set for error calculation is shown in brackets. Turning our attention now to the contribution to error on the production parameters u:

Failed to parse (syntax error): {\displaystyle \sigma_{fit}^2= \sum_{k,l}^n{ \sigma_{u_k}\sigma_{u_l} \frac{\partial}{\partial u_k}\left( \sum_{\gamma,\delta}{\rho_{\gamma\delta} \sum_{\alpha,\beta}^n{ u_\alpha u_\beta^* \left[ \frac{1}{N_{gen}}\sum_i^N{ A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) } \right] } } \right) \frac{\partial}{\partial u_l} \sum_{\gamma,\delta}{\rho_{\gamma\delta} \sum_{\alpha,\beta}^n{ u_\alpha u_\beta^* \left[ \frac{1}{N_{gen}}\sum_i^N{ A_\alpha^{\gamma \delta}(x_i) A_\beta^{\gamma \delta *}(x_i) } \right] } } \right) } }