Difference between revisions of "Maxwell's Equations"
Jump to navigation
Jump to search
| (9 intermediate revisions by 2 users not shown) | |||
| Line 10: | Line 10: | ||
|<math>\boldsymbol{\nabla \cdot B} = 0</math> | |<math>\boldsymbol{\nabla \cdot B} = 0</math> | ||
|- | |- | ||
| + | |height="20"| || | ||
|- | |- | ||
|Faradays's Law: | |Faradays's Law: | ||
| Line 18: | Line 19: | ||
|} | |} | ||
| − | == In the | + | == In the Presence of Charges and Dielectric Media == |
| − | |||
| − | Gauss' Law: | + | {|align=center |
| − | + | |Gauss' Law: | |
| − | <math>\boldsymbol{\nabla \cdot D} = \rho </math> | + | |Gauss' Law for Magnetism: |
| − | + | |- | |
| − | + | |<math>\boldsymbol{\nabla \cdot D} = \rho </math> | |
| − | + | |<math>\boldsymbol{\nabla \cdot B} = 0</math> | |
| − | <math>\boldsymbol{\nabla \cdot B} = 0</math> | + | |- |
| − | + | |height="20"| || | |
| − | Faradays's Law: | + | |- |
| − | + | |Faradays's Law: | |
| − | <math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> | + | |Ampere's Law: |
| − | + | |- | |
| − | + | |width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> | |
| − | + | |width="400"|<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math> | |
| − | <math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math> | + | |} |
| − | + | Where <math>\boldsymbol{D} = \epsilon_0 \boldsymbol{E}</math> and <math>\boldsymbol{B} = \mu_0 \boldsymbol{H}</math>. | |
Latest revision as of 02:52, 6 April 2007
In Free Space
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
| Gauss' Law: | Gauss' Law for Magnetism: |
| Faradays's Law: | Ampere's Law: |
In the Presence of Charges and Dielectric Media
| Gauss' Law: | Gauss' Law for Magnetism: |
| Faradays's Law: | Ampere's Law: |
Where and .