Difference between revisions of "Maxwell's Equations"

From UConn PAN
Jump to navigation Jump to search
 
(12 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
{|align=center
 
{|align=center
|Gauss' Law:|Gauss' Law for Magnetism:
+
|Gauss' Law:
 +
|Gauss' Law for Magnetism:
 
|-
 
|-
 
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>  
 
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>  
 
|<math>\boldsymbol{\nabla \cdot B} = 0</math>  
 
|<math>\boldsymbol{\nabla \cdot B} = 0</math>  
 
|-
 
|-
|Faradays's Law:|Ampere's Law:
+
|height="20"|&nbsp;||&nbsp;
 
|-
 
|-
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
+
|Faradays's Law:
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
+
|Ampere's Law:
 +
|-
 +
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
 +
|width="400"|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
 
|}
 
|}
  
== In the presence of charges and dielectric media ==
+
== In the Presence of Charges and Dielectric Media ==
<font color="red">Need to add possibly derivation of wave equation and definitely Maxwell's equation in presence.  Need also to introduce D and H and relate them to E and B.</font>
 
  
Gauss' Law:
+
{|align=center
 
+
|Gauss' Law:
<math>\boldsymbol{\nabla \cdot D} = \rho </math>  
+
|Gauss' Law for Magnetism:
 
+
|-
Gauss' Law for Magnetism:
+
|<math>\boldsymbol{\nabla \cdot D} = \rho </math>  
 
+
|<math>\boldsymbol{\nabla \cdot B} = 0</math>  
<math>\boldsymbol{\nabla \cdot B} = 0</math>  
+
|-
 
+
|height="20"|&nbsp;||&nbsp;
Faradays's Law:
+
|-
 
+
|Faradays's Law:
<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
+
|Ampere's Law:
 
+
|-
Ampere's Law:
+
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
 
+
|width="400"|<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math>
<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math>
+
|}
  
  
Back to [[Mapping diamond surfaces using interference]]
+
Where <math>\boldsymbol{D} = \epsilon_0 \boldsymbol{E}</math> and <math>\boldsymbol{B} = \mu_0 \boldsymbol{H}</math>.

Latest revision as of 02:52, 6 April 2007

In Free Space

These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.

Gauss' Law: Gauss' Law for Magnetism:
   
Faradays's Law: Ampere's Law:

In the Presence of Charges and Dielectric Media

Gauss' Law: Gauss' Law for Magnetism:
   
Faradays's Law: Ampere's Law:


Where and .