Difference between revisions of "Maxwell's Equations"

From UConn PAN
Jump to navigation Jump to search
 
(24 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
 
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
  
Gauss' Law:
+
{|align=center
 +
|Gauss' Law:
 +
|Gauss' Law for Magnetism:
 +
|-
 +
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>
 +
|<math>\boldsymbol{\nabla \cdot B} = 0</math>
 +
|-
 +
|height="20"|&nbsp;||&nbsp;
 +
|-
 +
|Faradays's Law:
 +
|Ampere's Law:
 +
|-
 +
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>
 +
|width="400"|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
 +
|}
  
<math>\boldsymbol{\nabla \cdot E} = 0 </math>
+
== In the Presence of Charges and Dielectric Media ==
  
Gauss' Law for Magnetism:
+
{|align=center
 
+
|Gauss' Law:
<math>\boldsymbol{\nabla \cdot B} = 0</math>  
+
|Gauss' Law for Magnetism:
 
+
|-
Faradays's Law:
+
|<math>\boldsymbol{\nabla \cdot D} = \rho </math>
 
+
|<math>\boldsymbol{\nabla \cdot B} = 0</math>  
<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
+
|-
 
+
|height="20"|&nbsp;||&nbsp;
Ampere's Law:
+
|-
 
+
|Faradays's Law:
<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>  
+
|Ampere's Law:
 +
|-
 +
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
 +
|width="400"|<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math>
 +
|}
  
  
{| class="wikitable" style="margin: 1em auto 1em auto"
+
Where <math>\boldsymbol{D} = \epsilon_0 \boldsymbol{E}</math> and <math>\boldsymbol{B} = \mu_0 \boldsymbol{H}</math>.
|<math>\vec{\nabla}\times\vec{D}=\frac{\rho_{ext}}{\epsilon_0}</math>
 
|align="right" width="200"| (1)
 
|}
 

Latest revision as of 02:52, 6 April 2007

In Free Space

These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.

Gauss' Law: Gauss' Law for Magnetism:
   
Faradays's Law: Ampere's Law:

In the Presence of Charges and Dielectric Media

Gauss' Law: Gauss' Law for Magnetism:
   
Faradays's Law: Ampere's Law:


Where and .