Difference between revisions of "Maxwell's Equations"

From UConn PAN
Jump to navigation Jump to search
 
(30 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== In Free Space ==
 
== In Free Space ==
  
These are the Maxwell's Equations we will be using to solve for "region I" in our approximation of the Michelson interferometer.
+
These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.
  
Gauss' Law:
+
{|align=center
{| class="wikitable" style="margin: 1em auto 1em auto"
+
|Gauss' Law:
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"| (1)
+
|Gauss' Law for Magnetism:
 +
|-
 +
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>
 +
|<math>\boldsymbol{\nabla \cdot B} = 0</math>
 +
|-
 +
|height="20"|&nbsp;||&nbsp;
 +
|-
 +
|Faradays's Law:
 +
|Ampere's Law:
 +
|-
 +
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
 +
|width="400"|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
 
|}
 
|}
  
Gauss' Law for Magnetism:
+
== In the Presence of Charges and Dielectric Media ==
  
{| class="wikitable" style="margin: 1em auto 1em auto"
+
{|align=center
|<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)
+
|Gauss' Law:
 +
|Gauss' Law for Magnetism:
 +
|-
 +
|<math>\boldsymbol{\nabla \cdot D} = \rho </math>
 +
|<math>\boldsymbol{\nabla \cdot B} = 0</math>  
 +
|-
 +
|height="20"|&nbsp;||&nbsp;
 +
|-
 +
|Faradays's Law:
 +
|Ampere's Law:
 +
|-
 +
|width="400"|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>
 +
|width="400"|<math>\boldsymbol{\nabla \times H} - \frac{\partial \boldsymbol{D}}{\partial t}= \boldsymbol{j} </math>
 
|}
 
|}
  
Faradays's Law:
 
  
{| class="wikitable" style="margin: 1em auto 1em auto"
+
Where <math>\boldsymbol{D} = \epsilon_0 \boldsymbol{E}</math> and <math>\boldsymbol{B} = \mu_0 \boldsymbol{H}</math>.
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3)
 
|}
 
 
 
Ampere's Law:
 
 
 
{| class="wikitable" style="margin: 1em auto 1em auto"
 
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)
 
|}
 
 
 
{| class="wikitable" style="margin: 1em auto 1em auto"
 
|<math>\vec{\nabla}\times\vec{D}=\frac{\rho_{ext}}{\epsilon_0}</math>
 
|align="right" width="200"| (1)
 
|}
 

Latest revision as of 02:52, 6 April 2007

In Free Space

These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.

Gauss' Law: Gauss' Law for Magnetism:
   
Faradays's Law: Ampere's Law:

In the Presence of Charges and Dielectric Media

Gauss' Law: Gauss' Law for Magnetism:
   
Faradays's Law: Ampere's Law:


Where and .