Difference between revisions of "Maxwell's Equations"

From UConn PAN
Jump to navigation Jump to search
Line 4: Line 4:
  
 
Gauss' Law:
 
Gauss' Law:
{|class="wikitable" style="margin: 1em auto 1em auto" | <math>\boldsymbol{\nabla \cdot E} = 0 </math> |align="right" width="200"|(1)|}
+
 
 +
<math>\boldsymbol{\nabla \cdot E} = 0 </math>  
  
 
Gauss' Law for Magnetism:
 
Gauss' Law for Magnetism:
  
{| class="wikitable" style="margin: 1em auto 1em auto" | <math>\boldsymbol{\nabla \cdot B} = 0</math> |align="right" width="200"| (2)|}
+
<math>\boldsymbol{\nabla \cdot B} = 0</math>  
  
 
Faradays's Law:
 
Faradays's Law:
  
{| class="wikitable" style="margin: 1em auto 1em auto" | <math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math> |align="right" width="200"| (3) |}
+
<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>  
  
 
Ampere's Law:
 
Ampere's Law:
  
{| class="wikitable" style="margin: 1em auto 1em auto" | <math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math> |align="right" width="200"| (4)|}
+
<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>  
 
 
  
 
{| class="wikitable" style="margin: 1em auto 1em auto"
 
{| class="wikitable" style="margin: 1em auto 1em auto"

Revision as of 03:20, 14 March 2007

In Free Space

These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.

Gauss' Law:

Gauss' Law for Magnetism:

Faradays's Law:

Ampere's Law:

 
(1)