Difference between revisions of "Maxwell's Equations"

From UConn PAN
Jump to navigation Jump to search
Line 4: Line 4:
  
 
Gauss' Law:
 
Gauss' Law:
{| class="wikitable" style="margin: 1em auto 1em auto"
+
{|class="wikitable" style="margin: 1em auto 1em auto" |<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"|(1)|}
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"| (1) |}
 
  
 
Gauss' Law for Magnetism:
 
Gauss' Law for Magnetism:
  
{| class="wikitable" style="margin: 1em auto 1em auto"
+
{| class="wikitable" style="margin: 1em auto 1em auto" |<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)|}
|<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)|}
 
  
 
Faradays's Law:
 
Faradays's Law:
  
{| class="wikitable" style="margin: 1em auto 1em auto"
+
{| class="wikitable" style="margin: 1em auto 1em auto" |<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3) |}
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3) |}
 
  
 
Ampere's Law:
 
Ampere's Law:
  
{| class="wikitable" style="margin: 1em auto 1em auto"
+
{| class="wikitable" style="margin: 1em auto 1em auto" |<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)|}
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)|}
 
  
  

Revision as of 03:17, 14 March 2007

In Free Space

These are the Maxwell's Equations we will be using to solve for regions "I" and "II" in our approximation of the Michelson interferometer.

Gauss' Law:

Gauss' Law for Magnetism:
Faradays's Law:
Ampere's Law:
(1)