Difference between revisions of "Maxwell's Equations"

From UConn PAN
Jump to navigation Jump to search
Line 4: Line 4:
  
 
Gauss' Law:
 
Gauss' Law:
 
+
{| class="wikitable" style="margin: 1em auto 1em auto"
<math>\boldsymbol{\nabla \cdot E} = 0 </math>
+
|<math>\boldsymbol{\nabla \cdot E} = 0 </math>|align="right" width="200"| (1)
 +
|}
  
 
Gauss' Law for Magnetism:
 
Gauss' Law for Magnetism:
  
<math>\boldsymbol{\nabla \cdot B} = 0</math>
+
{| class="wikitable" style="margin: 1em auto 1em auto"
 +
|<math>\boldsymbol{\nabla \cdot B} = 0</math>|align="right" width="200"| (2)
 +
|}
  
 
Faradays's Law:
 
Faradays's Law:
  
<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>
+
{| class="wikitable" style="margin: 1em auto 1em auto"
 +
|<math>\boldsymbol{\nabla \times E} + \frac{\partial \boldsymbol{B}}{\partial t}= 0</math>|align="right" width="200"| (3)
 +
|}
  
 
Ampere's Law:
 
Ampere's Law:
  
<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>
+
{| class="wikitable" style="margin: 1em auto 1em auto"
 +
|<math>\boldsymbol{\nabla \times B} - \mu_0\epsilon_0\frac{\partial \boldsymbol{E}}{\partial t}= 0 </math>|align="right" width="200"| (4)
 +
|}
 +
 
 +
{| class="wikitable" style="margin: 1em auto 1em auto"
 +
|<math>\vec{\nabla}\times\vec{D}=\frac{\rho_{ext}}{\epsilon_0}</math>
 +
|align="right" width="200"| (1)
 +
|}

Revision as of 03:14, 14 March 2007

In Free Space

These are the Maxwell's Equations we will be using to solve for "region I" in our approximation of the Michelson interferometer.

Gauss' Law:

align="right" width="200"| (1)

Gauss' Law for Magnetism:

align="right" width="200"| (2)

Faradays's Law:

align="right" width="200"| (3)

Ampere's Law:

align="right" width="200"| (4)
(1)