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Abstract
Although particle physics research is typically reserved for advanced undergraduates,
algebra-based physics students can readily develop the foundational skills necessary to

conduct particle physics research. Despite this, there is a shortage of educational resources
that introduce particle physics to algebra-based physics students. This project, Particle
Identification Playground, is a collection of Python-based activities that teach students

about several fundamental topics in experimental particle physics research. Through these
activities, students will learn about the common detectors used in particle physics, how
they work, and how we can use these detectors to identify particles. Students are able to
interact with 3D models of real particle detectors, use applets to visualize and analyze
particle physics data, and create and interpret plots commonly seen in published papers.
These activities provide students with the rare opportunity to engage with particle physics

research as early as high school.



1 Introduction

The traditional path into particle physics begins with some form of affiliation with a
university. Undergraduate students will approach a professor who conducts particle physics
research, and will join their lab group to learn foundational topics of particle physics. Stu-
dents will simultaneously develop auxiliary skills required for particle physics research, such
as coding. However, this path is inaccessible to a significant population. For example, stu-
dents that do not attend a research university may find it difficult to find a mentor in the
field, which may prevent them from exploring the field of particle physics. This issue is
particularly severe for high school students, who may require more mentorship than most
professors are willing or able to provide.

In recent years, several resources have been developed which enhance the average stu-
dent’s ability to engage with experimental particle physics. For example, in 2014, the Euro-
pean Center for Nuclear Research (CERN), which oversees the Large Hadron Collider (LHC),
announced its open data portal, which has since released over two petabytes of experimental
data for the public to analyze [1]. This reduces the burden on the curious student to find a
mentor at a university to find data to analyze, but it does not equip students with the skills
required to analyze the released data.

Other projects, such as Particle Physics Playground1 and QuarkNet2, provide activities
that teach students about the data analysis methods used in experimental particle physics.
These activities mainly focus on a stage of data analysis in particle physics called event
reconstruction. The goal of event reconstruction is to figure out what interactions occurred
and what particles decayed to produce the particles that we eventually detected in our
apparatuses. However, the detectors used in particle physics experiments don’t directly
provide information about what particles we detected. Instead, we need to analyze the
signals left in the detector to infer the type of particle that left said signal.

This is the goal of the particle identification process: to identify particles based on
the signals they leave in particle detectors. However, there are no educational resources
that teach budding particle physicists how to identify particles in experimental data, which
prevents curious students from developing the skills to analyze experimental data, even if
said data is publicly available.

This project created Particle Identification Playground3, a website that hosts a collection
of jupyter notebooks that introduce students with no particle physics experience to the
particle identification process. These activities only assume users have basic knowledge of
algebra, algebra-based physics, and python, which makes them accessible for students as
early as high school. These activities are also hosted on Google Colaboratory, which allows
students to complete these activities without needing to download or install anything on
their computer. With these activities, there is now a complete set of resources that enable
students to thoroughly analyze publicly available particle physics data without requiring
mentorship or affiliation with a research university.

1https://sites.google.com/siena.edu/particle-physics-playground/home
2https://quarknet.org/content/home-page
3https://duberii.github.io/pid-playground/
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2 Activities

This section contains a brief summary of each of the activities hosted on Particle
Identification Playground as of April 2024. For a complete, updated list of activities
you can visit Particle Identification Playground directly at https://duberii.github.io/
pid-playground/. You can also click on the headers of each section to be brought to the
corresponding activity.

2.1 Introductory Activities

2.1.1 Introduction to Vectors

“Introduction to Vectors” introduces vectors in the context of physics. The notebook
uses a python library called Plotly to create interactive 3d plots of vectors, which allows
students to see how the properties of a vector change as they vary its components. These
interactive plots are also used to help students see the effect of multiplying a vector by a
scalar, which they will use in later notebooks. Figure 1 shows an example of a plot generated
by Plotly. The user is able to click and drag to rotate the axes and the vector, which will
help students visualize what a vector would look like if plotted in 3D space. This notebook
is vital to ensure that high school students have worked with vectors before seeing them used
in later notebooks.

Figure 1: The solution to a practice problem in the “Introduction to Vectors” notebook.
The 3D plot shown can be rotated to allow the student to see the plot from different angles
in 3D space.

2.1.2 Introduction to Special Relativity

“Introduction to Special Relativity” introduces students to several relativistic quantities
that are frequently used in particle physics, as well as the unit system used in particle
physics. This notebook provides students with experience interpreting and manipulating
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the definitions of relativistic momentum, relativistic energy, and invariant mass, which are
quantities that are used to characterize particles that are detected in the GlueX detector.

2.1.3 Introduction to Pandas

“Introduction to Pandas” teaches students how to use a python package named Pandas,
which provides a convenient way to store large quantities of data. Although pandas is not
the industry standard for particle physics data analysis, it is a useful tool that students will
be able to use in a wide variety of applications, including the machine learning applications
that will be discussed in later activities. This activity introduces students to the dataframe
object and introduces ways to add columns, calculate columns based on other columns,
access rows, and iterate over rows, which allows for the rapid processing of large volumes of
data.

2.1.4 Introduction to the Standard Model

“Introduction to the Standard Model” is where students start learning about particle
physics. The student is introduced to foundational vocabulary in particle physics, which
enables them to classify particles based on their properties. Students are taught how to
identify bosons, fermions, hadrons, baryons, and mesons based on properties provided to
them in a Pandas dataframe.

2.1.5 Introduction to ROOT

“Introduction to ROOT”, teaches students about the most widely used data analysis
software in particle physics. In this notebook, students are introduced to the mission of
particle identification, and then they use ROOT to produce a one-dimensional histogram
that plots the masses of commonly detected particles, as shown in Figure 2. They then
are asked to produce similar histograms for datasets with decreased energy and momentum
accuracy, which helps them associate the width of a peak in a histogram with measurement
errors and statistical fluctuations.
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Figure 2: An example of a one-dimensional histogram that students are asked to produce
in the “Introduction to ROOT” notebook. This histogram plots the invariant masses of 11
stable particles and is used to show that experimental error reduces our ability to distinguish
particles.

2.1.6 2D Histograms in ROOT

In “2D Histograms in ROOT”, students are taught how they can plot two-dimensional
data in a two-dimensional histogram. Students are taught how to modify the procedure in-
troduced in the previous notebook to create a 2D histogram of energy vs. momentum, which
is shown in Figure 3. Students are also taught that statistical fluctuations and experimental
error present as “blurriness” or greater spread in 2D histograms.
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Figure 3: An example of a two-dimensional histogram that students are asked to produce in
the “2D Histograms in ROOT” notebook. This histogram plots the energy vs the momentum
of particles with no smearing or experimental error. Each stripe is associated with a different
stable particle.

2.2 Particle Identification Methods

2.2.1 Drift Chambers and Tracks

“Drift Chambers and Tracks” introduces students to drift chambers, which are among
the most common types of detectors used in particle physics experiments. In particular,
students are introduced to the GlueX Central Drift Chamber (CDC). This notebook covers
the geometry of the CDC, the working mechanism of drift chambers, and the track fitting
algorithm, which together enable accurate measurements of the momenta of charged parti-
cles. Figures 4 and 5 show examples of interactive plots that students interact with as part
of this notebook.
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Figure 4: A 3D model of the wires of the GlueX Central Drift Chamber (CDC). Students
are able to use sliders to change which rings they look at, which allows them to modify the
visual complexity of the model.

Figure 5: The track fitting applet in the “Drift Chambers and Tracks” notebook. Students
adjust the ‘z’ slider to line up the hit points, then change the values of ‘px’ and ‘py’ to
adjust the curvature of the track (shown in red). Running this cell multiple times will
produce different hit patterns to fit, which allows students to get as much practice as they
would like.
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2.2.2 Ionization Energy Loss

In the “Ionization Energy Loss” notebook, students are taught about how raw detector
signals in drift chambers can be used to calculate a quantity called ionization energy loss
per unit length, which can be used to identify charged particles. Students are then walked
through the process of creating an ionization energy loss histogram, such as the one seen in
Figure 6. Finally, students are taught how they can use this plot to identify particles by
using selection criteria known as cuts. The precise cuts are found by the student using an
interactive applet that uses sliders to adjust the cuts in real time.

Figure 6: A 2D histogram of rate of ionization energy loss (dE/dx) and momentum (p).
Each of the stripes in the histogram represents a distinct charged particle, and students
learn how to use these stripes to identify particles.

2.2.3 Time of Flight Detectors

Time of flight detectors are another common type of detector used in particle physics ex-
periments. In the “Time of Flight Detectors” notebook, students see how the GlueX Forward
Time of Flight detector works. Furthermore, students are asked to derive the relationship
between the quantities that are measured by the time of flight detector, momentum, and
mass, which shows them how the time of flight detector can be used to classify particles
using 2D histograms, such as the one shown in Figure 7. Finally, students place cuts on the
time of flight data, which allows them to classify particles in a variety of GlueX detectors.
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Figure 7: A 2D histogram students are asked to create in the “Time of Flight Detectors”
notebook. The relativistic quantity β, which can be calculated based on the time of flight,
is plotted against the momentum (p), which gives rise to distinct stripes corresponding to
different particles that were detected.

2.2.4 Cherenkov Detectors

When an object moves faster than the speed of sound in air, it creates a sonic boom.
When a charged particle moves faster than the speed of light in a material, it emits Cherenkov
radiation. In the “Cherenkov Detectors” activity, students see how Cherenkov radiation can
be used to identify particles. Students use the equations of special relativity to predict the
angle at which a particle will emit Cherenkov radiation, as well as the minimum momentum
that a particle has to have to emit Cherenkov radiation. Finally, students learn how the
GlueX Detection of Internally Reflected Cherenkov radiation (DIRC) detector works, and
uses it to identify particles.

2.2.5 Calorimeters and Neutral PID

All of the aforementioned particle identification methods only work on charged particles.
However, there are several neutral particles that we frequently detect in particle physics.
In “Calorimeters and Neutral PID”, students are introduced to calorimeters, which are the
only GlueX detectors that can detect neutral particles. Students explore the geometry of
the GlueX Barrel Calorimeter (BCal) through 3D models, such as the one shown in Figure
8, and visualize the complex interactions of particles in the BCal, as shown in Figure 9.
Students then conclude that identifying neutral particles manually is extremely difficult,
which provides motivation for the use of machine learning.
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Figure 8: An interactive 3D model of the Barrel Calorimeter (BCal) of the GlueX experiment.
Each of the blocks is a trapezoidal module, which are stacked together to form the cylindrical
BCal.

Figure 9: A 3D visualization of an interaction with the GlueX Barrel Calorimeter (BCal).
The branching pattern comes from interactions between the material of the BCal and the
particle, which produces a shower of secondary particles that branch out from the path of
the particle.

2.3 Advanced Topics

2.3.1 Working with Experimental Data

In previous activities, data has been provided to students in the form of a dataframe and
has been slightly simplified. In “Working with Experimental Data”, students are introduced
to the structure of the files that are produced by the detector and the type of information
that we have to work with. In particular, students are introduced to hypotheses, which are
calculations of the properties of a particle based on an assumption of a specific particle type.
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Multiple hypotheses are generated from each signal, so the role of particle identification
is to figure out which hypothesis accurately describes the signal. Students restructure the
functions they wrote for previous activities to be compatible with the hypothesis-based
format used in experimental data.

2.3.2 Confusion Matrices

In the “Confusion Matrices” notebook, students are introduced to confusion matrices,
which provide information about the accuracy of particle identification methods and identify
particles that are particularly difficult to distinguish. Creating confusion matrices allows a
direct comparison of the performances of two different particle identification methods. In
this activity, students are taught how to generate and interpret confusion matrices, such as
the one shown in Figure 10.

Figure 10: An example confusion matrix that is generated in the “Confusion Matrices”
notebook. Rows represent the true identity of the particle, while columns represent the
predicted identity using the particle identification method. The diagonal elements of the
confusion matrix represent the accuracies for each particle type.

2.3.3 Comparing PID Methods

In “Comparing PID Methods”, students draw conclusions about the power of the previ-
ously discussed particle identification methods. They explore the performance of the particle
identification functions they wrote on a variety of datasets and use the resulting confusion
matrices to draw conclusions about the ability of each particle identification method to
identify particles under a variety of conditions.
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2.3.4 Machine Learning Methods

Although cuts-based particle identification is effective and intuitive, it is not the only
approach to particle identification. Machine learning can provide an even more accurate
particle classifier by finding more nuanced relationships between the features we use for
cuts-based particle identification. In “Machine Learning Methods,” students learn to create
and train a Scikit-learn boosted decision trees model and use the trained model to identify
particles. Furthermore, students compare cuts-based particle identification with machine-
learning-based particle identification and describe the advantages and disadvantages of both.

2.3.5 Bias in Machine Learning

“Bias in Machine Learning” is designed to emphasize the importance of minimizing
sources of bias that may be introduced to machine learning models during the training or
evaluation process. Students learn to define and identify common issues in machine learning,
such as bias and overfitting. Feature importance is introduced as a method of identifying
over-reliance on a particular feature of the model, which may be a sign that we have intro-
duced some type of bias. Students are then introduced to several examples of biased models
and are tasked with removing the primary source of bias from the training and evaluation
processes.

3 Future Plans

3.1 Integrating Experimental Data

Although the current set of activities provides students with the skills to analyze real
experimental data, Particle Identification Playground only provides simulation data. Sim-
ulation data is particularly easy to work with because we always know the exact processes
and reactions that are being simulated, which we can use as an “answer key” for our particle
identification methods. In experimental data, particle identification is the means of investi-
gating the reactions that produced the particles we detected, which makes it much harder
to create a labeled dataset. However, it is important that students are able to explore real
data, so integrating experimental data is a priority.

3.2 Event Reconstruction

Although particle identification is a necessary stage of data analysis, it is only useful
as preparation for event reconstruction. Therefore, a future activity is planned that will
have students use their particle identification methods to identify particles then store the
identified particles in a format that can be used for reconstruction. This way, students can
make use of the activities provided by other resources such as Particle Physics Playground
and QuarkNet.
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3.3 Packaging Analysis Tools

Although many of the applets used in the activities of Particle Identification Playground
exist for educational purposes and may not be useful for analysis of experimental data,
some applets and functions provide a simplified wrapper for otherwise difficult to generate
visualizations. Because of the potential of these wrappers to be useful in data analysis,
packaging and publishing these functions may provide a simplified toolset for particle physics
data analysis in Python. Although these functions were already developed as they were
needed in the various activities, modifying the functions to be flexible enough to be useful
in a variety of analysis contexts and documenting these functions is a nontrivial task.
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