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Abstract: Accurate Particle Identification (PID) is a crucial element for successful reconstruction
of interactions measured in particle physics experiments. In the GlueX experiment at Jefferson
Laboratory, PID is achieved by making cuts on the kinematic properties of tracks and showers
reconstructed from hits in the detector. However, in this work we seek to improve upon these simple
cuts-based procedures using machine learning with neural networks. The promise of this approach
is the ability to exploit hidden correlations between PID variables in the reconstructed kinematics
data. We demonstrate that both charged and neutral particles can be identified in simulated GlueX
events with significantly improved accuracy using a neural network.
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1 Introduction

A long-standing question in modern physics is concerning the nature of the quark confinement
mechanism of quarks and gluons in quantum chromodynamics (QCD). To begin unraveling this
mystery, the GlueX experiment in Hall D at Jefferson Laboratory aims to better understand the
quark and gluonic degrees of freedom that are predicted by QCD through gluonic excitations of
hybrid mesons originating from 𝛾 – 𝑝 collisions [1, 2]. A comprehensive study of this spectrum
of hybrid mesons requires accurate determination of the final hadronic states through good particle
identificaiton (PID). The PID capabilities of the GlueX detector is enabled by four detector systems:
a forward time-of-flight wall (TOF), a barrel calorimeter with a cylindrical geometry (BCAL), a
forward lead-glass calorimenter with a planar geometry (FCAL), a thin scintillator start counter
(SC), and a Čerenkov detector [3, 4]. GlueX uses time-of-flight (TOF and BCAL), forward going
tracks (Čerenkov detector), and dE/ds (CDC) information to classify particles using a likelihood-
based PID system in combination with kinematic fitting.

In this work, the aim is to demonstrate that PID accuracies for GlueX analyses can be improved
through the use of machine learning (ML) [5]. The advent of ML has led to innumerable studies in a
wide range of fields, including a GlueX study [6] that used a discriminating neural network (NN) to
reduce background in the FCAL. Motivated by such studies and the demand for high accuracy PID,
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NNs are used to classify particles using GlueX simulation data and directly compared to ’manual’
PID methods using the same simulation dataset. This work exhibits that ML models can be a more
effective alternative to the contemporary methods of PID.

2 Monte Carlo Simulation Dataset

Both the training and test data are extracted from the low-momentum GlueX particle gun simulations.
In these simulations, a particle is spawned at a random location within the target and fired in a
random direction with a random magnitude of momentum under 1 GeV/c. The interactions between
the particle and the detector (along with any decays that may occur) are handled by Geant4 [7, 8],
with the simulated detector hits being stored in a Hall D Data Model (HDDM) format. These
data are then reconstructed using the halld_recon package to identify showers and tracks, which
significantly decreases the number of features needed to describe each event. Finally, these data are
converted from the hierarchical HDDM format to a tabular format that can be used in either manual
and NN PID. The labels of each quantity in our final dataset are shown in Table 1.

Although the particle gun simulations allow for easy event labeling, decays and other interac-
tions in the detector may produce tracks or showers that are not produced directly by the generated
particle. To exclude events in which the generated particle decayed before interacting with the
detector, we remove any event that has more than one vertex in the first 500 seconds of the sim-
ulation, as indicated by the truth information of the Monte Carlo simulation. Note that the initial
spawning of the generated particle is counted as a vertex. To eliminate events where interactions
with the detector produced secondary tracks or showers, cuts were placed on the number of tracks
and showers per event. For events with a charged generated particle, the event was only included in
the training and test samples if the reconstructed event contained exactly one track and one shower,
and the shower must be associated with the track. Events with neutral generated particles must have
exactly one shower and no tracks. These cuts are necessary to ensure the event label matches the
particle that produced the shower or track that is included in the training or test dataset, though it
may inflate the accuracy of PID techniques due to the exclusion of complicated interactions with
the detector.

The training dataset consists of 80,000 events per particle type. For events with a charged
generated particle, only the track hypothesis that matches the generated particle type is included
in the training dataset. For events with muons, only the pion track hypothesis was added to the
training dataset, as there is no muon hypothesis in the default reconstruction. This results in a
training dataset in which each row of the dataset represents a different event. In contrast, a row
corresponding to each hypothesis is added to the test dataset for events with charged generated
particles; the event number is identified by the group label, which only appears in the test dataset.
For neutral particles, there is only one row in the test dataset per event, as no hypotheses are used in
the shower reconstruction process. The test dataset contains 40,000 events per particle type, though
the number of rows is substantially larger due to the inclusion of multiple hypotheses per event for
charged generated particles.
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Table 1: Feature labels of the particle gun dataset.

Column Unit Description Overflow Value

true ptype The true generated particle type (Geant3 coding)
ptype Particle hypothesis (Geant3 coding)
group Event number
E 𝐺𝑒𝑉 Particle total energy -5
px 𝐺𝑒𝑉/𝑐 Particle momentum X-component -500
py 𝐺𝑒𝑉/𝑐 Particle momentum Y-component -500
pz 𝐺𝑒𝑉/𝑐 Particle momentum Z-component -500
q 𝑒 Particle charge -10
E1E9 E1/E9 ratio for the matched FCAL cluster -5
E9E25 E9/E25 ratio for the matched FCAL cluster -5
docaTrack 𝑐𝑚 Impact parameter of track to FCAL cluster -5
preshowerE 𝐺𝑒𝑉 Shower energy in the 1st layer of the BCAL -5
sigLong 𝑐𝑚 RMS of BCAL shower along depth -5
sigTrans 𝑐𝑚 RMS of BCAL shower along azimuth -5
sigTheta 𝑟𝑎𝑑 RMS of BCAL shower along Z -5
E_L2 𝐺𝑒𝑉 Shower energy in the 2nd layer of the BCAL -5
E_L3 𝐺𝑒𝑉 Shower energy in the 3rd layer of the BCAL -5
E_L4 𝐺𝑒𝑉 Shower energy in the 4th layer of the BCAL -5
dEdxCDC 𝑘𝑒𝑉/𝑐𝑚 Average dE/ds of track in the CDC -5
dEdxFDC 𝑘𝑒𝑉/𝑐𝑚 Average dE/ds of track in the FDC -5
tShower 𝑛𝑠 Mean shower time in the BCAL or FCAL -10
thetac 𝑟𝑎𝑑 Track Cerenkov angle measured by DIRC -5
bCalPathLength 𝑐𝑚 Track distance from vertex to BCAL entry -5
fCalPathLength 𝑐𝑚 Track distance from vertex to FCAL entry -5
dEdxTOF 𝑘𝑒𝑉/𝑐𝑚 Average track dE/ds in the TOF -5
tofTOF 𝑛𝑠 Time from track vertex to impact on the TOF -5
pathLengthTOF 𝑐𝑚 Distance from track vertex to impact on the TOF -5
dEdxSc 𝑘𝑒𝑉/𝑐𝑚 dE/ds of track in the SC -5
pathLengthSc 𝑐𝑚 Distance from track vertex to impact on the SC -100
tofSc 𝑛𝑠 Time from track vertex to impact on the SC -100
xShower Shower X-component -500
yShower Shower Y-component -500
zShower Shower Z-component -500
xTrack Track X-component -500
yTrack Track Y-component -500
zTrack Track Z-component -500
CDChits Number of straws in the CDC producing hits -5
FDChits Number of anode wires in the FDC producing hits -5
DOCA 𝑐𝑚 Impact parameter of track at the BCAL cluster -5
deltaz 𝑐𝑚 Impact parameter of track at the BCAL along Z -100
deltaphi 𝑟𝑎𝑑 Impact parameter of track at the BCAL along azimuth -10
tFlightSc 𝑛𝑠 Calculated time from vertex to SC
tFlightBCAL 𝑛𝑠 Calculated time from vertex to BCAL
tFlightTOF 𝑛𝑠 Calculated time from vertex to TOF
tFlightFCAL 𝑛𝑠 Calculated time from vertex to FCAL
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3 DNN model description

In this section we explain and justify the Tensorflow implementations of the Adam optimizer, the
cross entropy loss function, the activation functions and Hyperband optimization.

3.1 Cross Entropy Loss Function

The advent of logistic regression by [9] and the creation of the idea of cross-entropy in the early
years of information theory has evolved into a loss function that ubiquitous in machine learning: the
cross entropy loss function. In general, the minimization of cross entropy between two distributions
is equivalent to the maximization of the log likelihood [10]. The log likelihood can be defined as:

𝑙 (𝜃) =
1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑃(𝑥𝑖 |𝜃)). (3.1)

Where 𝑥𝑖 is a given detection (or in the case of this article, a particle) and 𝜃 defines our
parameter space (e.g., energy loss, momenta). By maximizing the log likelihood, we can best
predict the probability of detecting a given 𝑥𝑖 when provided with 𝜃. Also defined in terms of the
probability of 𝑥𝑖 and 𝜃, the cross entropy 𝐻 (𝑃𝐷 (𝑥), 𝑃𝜃 (𝑥)) is defined as:

𝐻 (𝑃𝐷 (𝑥), 𝑃𝜃 (𝑥)) = −
1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑃(𝑥𝑖 |𝜃)) = −𝑙 (𝜃). (3.2)

Thus, we see that maximizing the log likelihood is equivalent to minimizing the cross entropy;
otherwise known as the cross entropy and maximum likelihood principle. In our DNN, we utilize
the Tensorflow implementation of the cross entropy loss function, which calculates the cross
entropy loss between our dataset 𝜃 and the generated particle 𝑥𝑖 . The minimization of the cross
entropy loss is made to be the objective of our DNNs, and the optimization process is described in
Section 3.4.

3.2 Adam Optimizer

As stated in Section 3.1, we make minimizing the cross entropy loss function the objective of
our machine learning problem. To do this, we implement the Adam optimizer [11]. The Adam
optimizer is a method to efficiently optimize the subfunctions that make up the entire objective
function by taking gradient steps with respect to each individual subfunction. This process also
describes Stochastic Gradient Descent, however the Adam optimizer is particularly designed to
optimize parameters for stochastic subfunctions in high dimensional space, while only requiring
first-order gradients. The large level of stochasticity in measured quanities within particle colliders
makes the Adam optimizer an ideal choice for minimizing the cross entropy loss function.

3.3 Structure and Activation Functions

The structure of our neural network is comprised of an input layer, one or multiple hidden layers
(determined via optimization in Section 3.4), and an output layer. The input layer of our models is
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comprised of 38 nodes, which is equal to the number of feature labels shown in Table 1. In each of
the hidden layers of our neural network we add the Rectified Linear unit (ReLu) activation function
[12, 13]. The ReLu activation function is described as

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥), (3.3)

so that for any input 𝑥 from a previous neuron, a non-negative output 𝑓 (𝑥) will be produced from
that neuron. The non-linearity of ReLu introduces sparsity and avoids saturation at large values,
while also remaining simple. These advantages allow for efficient training and for meaningful
connections to be drawn between complex relationships in the data. In our output layers, we use
the sigmoid activation function, shown in Equation 3.4.

𝑆(𝑥) =
1

1 + 𝑒−𝑥 .
(3.4)

With an input 𝑥, the output 𝑆(𝑥) will always be between 0 and 1, which makes the sigmoid
function effective for PID.

3.4 Hyperband

In order to minimize the Cross Entropy Loss function, we must find optimized values for the
number of hidden layers, the number of neurons in each hidden layer, and the learning rate of the
Adam optimizer. In this work we find the optimized values of each of these hyperparameters using
Hyperband [14]. We chose to employ Hyperband as the optimization algorithm since it is more
computationally efficient and performs better than Bayesian optimization [14]. Hyperband selects
a different set of hyperparameters and trains the neural network for a fixed number of epochs. A
method known as successive halving is then utilized, which removes half of the models with the
largest Cross Entropy loss. This procedure is repeated until only a single set of hyperparmaters
remains; these hyperparmeters are then used for training.

4 Methods

In this section we describe our manual PID cuts and the training process for our neural network
models used for PID.

4.1 Manual PID

In this work, we identify pions (∼139.6 MeV/c2) and muons (∼105.7 MeV/c2) as the same particle,
denoted as 𝜋+ | 𝜇+ or 𝜋− | 𝜇− for the positive and negative counterparts, respectively. This
simplification is made for our PID methods in this paper since pions and muons have similar
masses and the GlueX detector does not have a hadronic calorimeter, which makes discerning
these particles particlularly difficult. Muons and Pions can be distinguished by investigating
the momentum distributions of a given event in the FCAL, however this must be done prior to
reconstruction, which is outside the scope of this work.
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The timing cuts we implement in this make use of the Spring 2017 Analysis Launch Cuts [1];
each of these cuts are shown in Table 2. The measured BCAL and FCAL times are recorded as a
single variable in our dataset: tShower. If an event has a detection for 𝐸𝐿2 then we label tShower
as the mean shower time in the BCAL and if there is a detection for E1E9 then we label tShower
as the mean shower time in the FCAL. We find the difference between the mean shower times in
each detector with the calculated time from the vertex to the respective detectors (tFlightBCAL or
tFlightFCAL). In order to assess the quality of a given hypothesis, we calculate a chi-squared value
between the mean shower time and calculated shower times. Only hypotheses with a chi-squared
value of less than 0.075 are considered robust; any hypotheses that are above this threshold are
labeled as no identification (no ID). We can only perform timing cuts on charged particles as there
is no calculated timing information in our simulation dataset.

In addition to timing cuts, we also implement track energy loss cuts using the dEdxCDC variable
and the particle momentum vectors added in quadrature. To create a decision boundary between
each particle, we use the same functional form of the equations used in the Spring 2017 Analysis
Launch Cuts:

𝑑𝐸/𝑑𝑠 = 𝑒𝑎·𝑝+𝑏 + 𝑐, (4.1)

where 𝑝 is the momentum of a particle in units of𝐺𝑒𝑉/𝑐, 𝑑𝐸/𝑑𝑠 is the energy loss in the CDC
in units of 𝐾𝑒𝑉/𝑐𝑚 and 𝑒 is Euler’s number. 𝑎, 𝑏 and 𝑐 are constants that are varied in order to best
classify each particle. Using the training dataset, we minimize the number of incorrectly identified
particles by making each of these constants as free parameters and utilizing the minimize method
from the scipy.optimize [15] module. Similarly to the timing cuts, we only derive dE/ds – p
decision boundaries for charged particles. We show the optimized decision boundaries in Equations
4.2 – 4.4.

𝑑𝐸/𝑑𝑠1 = 𝑒−5.095·𝑝−10.205 + (2.080 · 10−6), (4.2)

𝑑𝐸/𝑑𝑠2 = 𝑒−3.947·𝑝−12.284 + (1.936 · 10−6), (4.3)

𝑑𝐸/𝑑𝑠3 = 𝑒−0.185·𝑝+−19.215 + (2.190 · 10−6), (4.4)

Each decision boundary is overlaid on the test dataset in Figure 1. Additionally, only for
electrons and muons/pions, we use the particle’s total energy E divided by the total momentum;
a decision boundary of 0.83 𝑐 is chosen. Lastly, we only consider a hypothesis if the particle
hypothesis matches the predicted hypothesis from our manual PID. Each of the conditions for our
manual PID are shown in Table 2. A PID is made for every hypothesis in our test dataset that
passes all of the cuts shown in Table 2. If a given even meets none of the cuts made, then no ID is
designated; if an event has two or more PIDs that match the hypotheses in our test dataset, then the
particle type with the highest chi-squared value is designated. The confusion matrix presenting the
results of our manual PID on charged particles is shown in Figure 2a.
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Figure 1: A 2-Dimensional histogram of the average track energy loss in the CDC plotted against
the total momentum from our test dataset. The manual PID cuts described in Section 4.1 are overlaid
to show the classification boundaries; the functional form of each decision boundary is shown in
Equations 4.2 – 4.4. Regions of the plot shaded in red are classified as 𝑝 or 𝑝, purple as 𝐾+|−,
yellow as 𝑒−|+, and blue as 𝜋+|− or 𝜇+|−.

Table 2: Manual PID cuts. If an entry is missing, there is no cut for that particle. All manual PIDs
must match the given hypothesis.

Particle Δ𝑡 BCAL [ns] Δ𝑡 FCAL [ns] dE/ds [keV/cm] E/p [𝑐]

𝑒+ ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠2 > 𝑑𝐸/𝑑𝑠 E/p > 0.83
𝑒− ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠2 > 𝑑𝐸/𝑑𝑠 E/p > 0.83
𝜇+ |𝜋+ ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 > 𝑑𝐸/𝑑𝑠 E/p < 0.83
𝜇− |𝜋− ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠3 > 𝑑𝐸/𝑑𝑠 E/p < 0.83
𝐾+ ± 0.75 ± 2.5 𝑑𝐸/𝑑𝑠2 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠1 > 𝑑𝐸/𝑑𝑠
𝐾− ± 0.75 ± 2.5 𝑑𝐸/𝑑𝑠2 < 𝑑𝐸/𝑑𝑠 & 𝑑𝐸/𝑑𝑠1 > 𝑑𝐸/𝑑𝑠
𝑝 ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠1 < 𝑑𝐸/𝑑𝑠
𝑝 ± 1.0 ± 2.0 𝑑𝐸/𝑑𝑠1 < 𝑑𝐸/𝑑𝑠
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(a) Manual PID (b) NN PID

Figure 2: The confusion matrix for our manual PID on charged particles shown in Figure 2a and the
confusion matrix for our NN PID on charged particles shown in Figure 2b. The generated particle
is shown on the y-axis and the identified particle is shown on the x-axis. For events in our manual
PID scheme that do not meet our chi-squared criteria described in Section 4.1, a no identification
(no ID) classification is given. Similarly, for our NN PID method, a no ID classification is given
when the confidence criteria described in Section 4.2 is not achieved.

4.2 Neural Network PID

We split our datasets into charged and neutral datasets. Furthermore, to ensure that the input feature
space of each event/hypothesis is uniform, we replace any value in our datasets that do not have a
detection with the ’Overflow Value’ seen in Table 1. Additionally, only the features in Table 1 that
have an Overflow Value are used to train our two models.

Our neural network models we make use of the TensorFlow implementations of the Cross
Entropy Loss Function, Adam Optimizer and ReLu activation function, all of which are described
in Section 3. The number of neurons, the number of hidden layers and the learning rate of the
Adam optimizer are optimized to have the maximum validation accuracy by Hyperband. We allow
variation between 1 and 6 hidden layers, between 100 and 600 neurons per hidden layer and between
10−4 and 10−2 for the learning rate. We use the optimized hyperparameters to train a NN model
for a maximum of 50 epochs and stop the training if the TensorFlow implementation of Early
Stopping if the Cross Entropy Loss changes by less than 0.01 after 5 epochs.

Our trained models are used to make a classification on every hypothesis in the test dataset.
Each prediction made by the predict method from the Tensorflow models yields a confidence
value for each possible classification (i.e. particle). We take the highest confidence value across all
hypotheses in an event and label that event with the corresponding particle type. A no ID label is
given for any PID that has a confidence of less than 0.4. In the same way as Section 4.1, we consider
positive pions and muons and negative pions and muons as the same particles. The confusion
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Figure 3: The confusion matrix for our NN PID for neutral particles; the generated particle is
shown on the y-axis and the particle classified by our neutral NN model is shown on the x-axis.
Particles that do not meet the confidence criteria discussed in Section 4.2 are classified with a no
identification (no ID) label.

matrix for our charged NN model is shown in Figure 2b and the confusion matrix for our neutral
NN model is shown in Figure 3.

5 Results

In this section we present the results of our traditional PID cuts and NN PID. We make a direct
comparison between these two methods and demonstrate advantages of NNs in PID. We also
determine the importance of each feature in the simulation dataset to understand what features the
NN models suggest are the most crucial for PID.

5.1 Comparing PID techniques

In Figure 2a, the 𝑝 sample is correctly identified with an accuracy of 0.942 for the manual PID
method, with only 0.052 of samples being allocated to the no ID column of the confusion matrix.
The 𝑝 is the particle with the highest accuracy, while the 𝐾−, 𝑒− and 𝑒+ have PID accuracies in
the range 0.82 – 0.84. The lower end of classification accuracies are 𝑝, 𝐾+, 𝜋+ | 𝜇+ and 𝜋− | 𝜇−
in the range 0.57 – 0.64. We see that many of the samples that are not correctly identified by our
manual PID method are designated as no ID. The most prominent exceptions of this are 0.124 of
the 𝐾+ sample misidentified as 𝑝 while 0.092 and 0.107 of the 𝜋+ | 𝜇+ sample identified as 𝐾+

and 𝑒+, respectively. For 𝜋− | 𝜇−, 0.087 and 0.107 were identified as 𝐾− and 𝑒−, respectively.
In addition to these common misclassifications, there are several cases in which our manual PID
method misclassified samples more infrequently (< 0.05). The large number of events that pass the
chi-squared timing cut and which are incorrectly identified highlight the areas of improvement of
the classification accuracies of the manual PID method.

In Figure 2b, the confusion matrix of our charged NN model is presented. The 𝑝, 𝑒− and 𝑒+

are correctly identified in the range 0.94 – 0.98 and the five other charged particles have accuracies
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in the range 0.83 – 0.91. It is found that for all particles the PID accuracy is better for our NN PID
method in comparison to our manual PID method. 𝑝 and 𝐾− have an improvement of ∼0.03, 𝑒− and
𝑒+ have an improvement of 0.1 – 0.13, and the four other particles have substantial improvements
of more than 0.2. In addition to substantial improvements in PID accuracy, we see decreases in the
misclassification of 𝐾+ as 𝑝 (0.075), 𝜋+ | 𝜇+ as 𝐾+ (0.06) and 𝑒+ (0.041), and 𝜋− | 𝜇− as 𝐾− (0.052)
and 𝑒− (0.033). Despite the decreases in these particlular misidentifications, we see increases in 𝑝
as 𝐾− (0.064), 𝐾+ as 𝜋+ | 𝜇+ (0.087), and 𝐾− as 𝜋− | 𝜇− (0.098). The increase in misidentification
of these particles is the lone shortcoming of the NN PID method in contrast to our manual PID
method.

Our classification scheme discussed in 4.2 indicates that a particle type is assigned only when
the confidence interval from our model is 0.4. Even when this criteria is increased from 0.4 to
0.95, these misclassifications from our NN model still persist, which indicates that the only way
to remove these misidentifications is through adopting a different ML architecture or making more
stringent cuts.

5.2 Feature Importance with Shapley Values

We need to make a distinction between Shapley values and SHapley Additive exPlanations (SHAP)
[16].

To analyze the PIDs made by our neural network, we use Shapley values to assess the importance
of each feature. For a given PID made by our models, a Shapley value for a given feature measures
the average contribution of that feature across the entire feature space. A Shapley value is computed
for each feature for a given classification by considering possible permutations of features and then
taking the average of all marginal contributions by a feature to the resultant prediction. In our case,
this process is very computationally expensive, so we use random.choice from NumPy [17] to
randomly sample 1,000 classifications from our test sample. We take the median Shapley value for
each particle and for each feature label used in our neural network models.

The absolute value of our SHAP values for positively charged particles is shown in Figure 4,
negatively charged particles in Figure 5, and neutral particles in Figure 6.

6 Conclusion

Discuss briefly:

1. Sample selection bias

2. Advantages of Neural Networks in PID
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Figure 4: We denote the SHAP value magnitude as the absolute value of our SHAP values. We
randomly sample 103 hypotheses from our test sample for each particle type and calculate the SHAP
value [16] for each feature. Here we show only the 𝑞 = +1 particles from our charged particle NN
model; 𝑝 in pink, 𝐾+ in red, 𝑒+ in light blue and 𝜋+ | 𝜇+ in green. The black line in each box plot
represents the mean SHAP value in a given box plot. The upper and lower end of a given box plot
represents the 75th and 25th percentile of the data, respectively. Each of the feature labels used to
train our charged NN model from Table 1 are shown on the x-axis unless a SHAP value of zero is
calculated, then these features are omitted.

Figure 5: The same as Figure 4, except we show SHAP value magnitudes for particles with 𝑞 = −1.
We show 𝑝 in pink, 𝐾− in red, 𝑒− in light blue and 𝜋− | 𝜇− in green.
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Figure 6: The same as Figure 4 and 5, except we show the SHAP value magnitudes for particles
included in our neutral particle NN model. We show 𝛾 in pink, 𝐾0

𝐿
in red and 𝑛 in light blue.
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