
A Report on Summer Work

The LabVIEW Program

Preliminary Steps

I began my work this summer by helping Ann Marie Carroll to move furniture, but soon 
we ran out of things to do and she suggested that I study LabVIEW. When Jim McIntyre returned 
from his vacation, he talked with us and assigned Ann Marie to fuse fibers and me to write a 
program that would read a voltage from a thermocouple, convert it to temperature, and control a 
heater and a pump.

I still had to learn more about LabVIEW before beginning to write the program, so I 
continued to study the language using Emily Briere's LabVIEW textbook. But at some point in July 
I felt that I was ready to begin my attempt. 

Most of the files that I used or made in the program development are in a folder on Jim's 
computer titled "Ben Willis" (C:\Documents and Settings\Jim\My Documents\Ben Willis). Some of 
the early ones may not be there, such as Emily's preliminary program.

Emily Briere had made a preliminary program file for me to start with, and I added 
controls and functions to it. My modified version is available as "Copy of Heater Control.vi." She 
put in a comparison function wired to a case structure with Boolean indicators labeled "Heater 
On" and "Turn Off Power." I had been informed that AIn-1.vi would read the voltage from the DAQ 
card, so I copied its block diagram into my block diagram. I found a function called "Convert 
Thermocouple Reading.vi" that had six input terminals: temperature units, thermocouple voltage 
and thermocouple type, cold junction compensation voltage and cold junction compensation 
sensor, and type of excitation. Its output terminal was called linearized temperature. I wired it to 
AIn-1.vi because I suspected that it would output the temperature without requiring us to use the 
mathscript node.

Brendan Pratt has been a great help to me on this job. I consider him my professor of 
LabVIEW. He brought in an oscilloscope and wired it to the DAQ card so we could measure a 
voltage. He made a file I titled "Communicating with DAQ Card.vi" that displayed a voltage from 
an oscilloscope on a waveform chart, but it did not behave as he expected. Because I did not 
know how to use an oscilloscope, I preferred to focus on how the program would respond to a 
signal after measuring it.

Writing Strings to the netBooter

The first problem that I confronted was how to communicate with the netBooter that 
operates the switches and outlets that would supply or cut off electricity to the heater and pump. 
As shown in "VISA Session.vi," I searched for the netBooter using the function "VISA Find 
Resource." The find list reported two resources, ASRL1::INSTR and ASRL10::INSTR. At the time, 
I had not correctly identified the serial cable that carries signals between the computer and the 
netBooter. I was baffled until Brendan determined that the computer was communicating with the 
netBooter through the COM1 port. He found an example called "Basic Serial Write and Read.vi" 
that we could use to write the same strings to the netBooter as we would use in HyperTerminal. 
This file is in my folder and is titled "Bens_Serial.vi."

On the front panel of this VI is a "string to write" text box. I entered each of the strings that 
we used with HyperTerminal into this text box, and the netBooter responded correctly to almost all 
of them. I described the commands in a WordPad file called "netBooter Strings," in which I wrote 
directions for the program at the time.

"These are the commands that work with the String to Write function in LabVIEW. At the 
end of each command you must put a termination character by pressing the enter key. Otherwise 
the command will not work. 



Turn on all power outlets: ps 1
Turn on outlet 1: pset 1 1
Turn on outlet 2: pset 2 1
Turn off outlet 1: pset 1 0 
Turn off outlet 2: pset 2 0 
Turn all outlets off: ps 0 

"Below Ann Marie describes the set of commands used in HyperTerminal. We don't have 
our outlets assigned to a group, so I did not try the commands for a group. The help command in 
LabVIEW does show some commands, but it also generates a rapid series of error messages. 
The reboot command causes the netBooter and the DAQ card to switch on and off rapidly. I'm 
guessing that is not a good idea. 

"'In HyperTerminal the commands are:
        help shows a list of helpful commands.
        pset n x - turns power outlet on/off.  Where “n” is outlet #; “x” is either “0” (off) or “1” (on).
        rb n - reboots outlet n.
        grb n - reboots outlets assigned to group “n”
        ps 1 - turns all power outlets on.
        ps 0 - turns all power outlets off.
        gps n 0 - turns off outlets assigned to the group n.
        gps n 1 - turns on outlets assigned to the group n.'"

However, the program needed to use more than one string. It needed to turn on all 
outlets and then turn them off separately. When more than one string was in the "string to write" 
text box, the commands did not work. I wanted to find a way to select which strings to write from 
the various strings we needed. I copied the block diagram from Basic Serial Write and Read to 
another file, "Bending.vi," and put the functions I had wired together to obtain the temperature 
there also. I hoped that the case structure would be able to select which strings to write based on 
the water temperature, so I wired "Greater or Equal?" to the case structure. This was a mistaken 
idea of course; what is wired to the selector terminal determines which case executes. The 
vertical toggle switch labeled "write" wired to the case structure on the left selects the case for 
this case structure.

On the "Strings and Timing.vi" block diagram you can see other ideas that would not 
work. The pink boxes containing strings are string constants from the String subpalette under 
Programming on the Functions palette. One of my ideas was to wire several string constants to a 
"Build Array" function and use the "Line Number" numeric control to select which array element to 
send to the "Write Buffer" terminal of "VISA Write" in the case structure.

A more promising idea (I still wonder if it would work) was to use the "Pick Line" function 
to select a line from a multi-line string to send to the Write Buffer terminal. I tried to use an 
Enumerated Type control to test my idea. From reading the help, I thought that Pick Line would 
select a line based on a numeric input and append that line to an empty string, which I imagined 
as something like an envelope that holds any string that needs to be mailed. Perhaps that is not 
what an empty string is. In any case, I did not succeed at the time.

At this point, Brendan came in to save the day. He knew we could use Basic Serial Write 
and Read.vi as a subVI and duplicate it for each string we needed. He created a file called 
smiley.vi, which is on the desktop, that we would use to turn on the heater and pump. It is a subVI 
with an icon of a smiley face that can be put in another VI so that it doesn't clutter the block 
diagram. It has the same controls and functions on the front panel and block diagram as Basic 
Serial Write and Read. In the "string to write" text box is the string "ps 1" which turns all outlets 
on. Brendan also made a similar file, frowny.vi, which is for turning off outlets. I made one copy for 
each outlet, calling them "Outlet 1 Off.vi" and "Outlet 2 Off.vi." The strings in them do what the file 
names describe. I also made other copies of these files, but we don't need to use them because 
we don't plan to use all the possible commands.

For a few days I was annoyed that whenever I opened a program that contained smiley, 
Outlet 1 Off, or Outlet 2 Off, the strings they should have had in the "string to write" text boxes 



were not there. Instead, the strings read, *IDN?\r\n. Finally I discovered that the shortcut menu for 
the text box has the submenu Data Operations, where there is an option to "Make Current Value 
Default." After that the strings were always right. "Make Current Value Default" is also available 
on the shortcut menus for numeric and Boolean controls, and there is a very helpful item called 
"Reinitialize Values to Default" in the Edit menu on the front panel and in the shortcut menus for 
controls.

Brendan made a program, which I saved as "Simple Heater Control.vi" and copied as 
"Pre-Heat Control SP1.vi" and "Bending Control SP1.vi." I made the copies because Jim wanted 
to include two heating situations, pre-heating and bending. (As I look at this program, I wonder if 
keeping the flat sequence structure with the frames that divide the process into steps would have 
enabled later versions of the program to turn off the outlets separately as they were supposed to 
do.) We used the program to measure a voltage with the oscilloscope and turn the outlets on if it 
was high and off if it was low.

The Button Challenge

But Jim wanted several buttons on the front panel. He wanted start buttons for pre-
heating and bending, stop buttons to turn off the heater and the pump, and an "End Bending" 
button. One of the stop buttons should turn off the pump five minutes after the heater, another two 
minutes after the heater, and the emergency stop should shut off both at the same time. I wanted 
to add those buttons, and I thought it would be a simple matter. 

First I wanted to figure out how to make buttons that would turn the outlets on and off 
directly, with a delay after Outlet 1 shut off before Outlet 2 shut off, and indicators to show that the 
strings had been written to the netBooter. Brendan accomplished this feat in "Adding On and Off 
Indicators.vi." He developed more complicated cases for turning on the heater and the pump so 
that the indicator lights on the front panel would respond to the true case along with the 
"smiley.vi," "Outlet 1 Off.vi," and "Outlet 2 Off.vi" files. We had also added a time delay using a flat 
sequence structure and a for loop in each case structure so the processes would execute only 
once per iteration of the while loop. We used local variables to read true or false constants wired 
to them and write to the indicator lights outside the case structures. You will notice that there is a 
false constant wired to local variables outside the while loop. I do not know why they are there, 
but Brendan put them there, and I have always kept them there in subsequent files because the 
program might not work without them. See Brendan for more information.

The Event Structure

In "Adding On and Off Indicators.vi," there is one button for each case structure. But I 
needed three stop buttons to control the lower case structure with different time delays for each. 
You can't just wire two or more controls directly to a case structure. I explored the functions 
palette, the LabVIEW help, and the National Instruments discussion forums. Brendan's 
programming skills had taught me to look for useful functions in the Structures subpalette, so I 
eventually settled on the event structure as a likely method of controlling the case structures with 
buttons in "Heater Control Using Event Structure.vi." I had six buttons with a case for each button 
that would occur with the "Mouse Up" event. To view the details about these events, you can 
select "Edit Events Handled by This Case" on the event structure shortcut menu and navigate 
through the cases using the "Events Handled for Case" dropdown menu.

In each case (except timeout, which is set to -1 for never time out) I had a true constant 
wired to one of the case structures or to the conditional terminal of the while loop. Thus, each 
event case would turn on the heater and pump or turn them off by supplying a true value to one of 
the case structures or it would supply a true value to the conditional terminal of the while loop, 
which would stop the program from running. (The conditional terminal is set to "Stop if True.") 
Also in the event cases are numeric constants wired to the "Milliseconds to Wait" function in the 
second frame of the flat sequence structure in the lower case structure. These constants 
determine how long to wait before turning off the pump after turning off the heater. I have a 
constant where it is not needed in one of the cases.



I do not think I needed a for loop around the event structure. It seems that the event 
structure executes for only one iteration of the while loop after an event and then waits for 
another event.

However, the buttons in the program we needed would not simply turn the heater on or 
off. The start button will have to cause the program to turn the heater and pump on or turn them 
off based on the water temperature. In "Respond Once to Sine Signal.vi," the scenario is more 
realistic. I wired a simulated sine signal to a "Less or Equal?" function in an attempt to turn the 
outlets on if the signal were less than or equal to a certain value and off if it were greater than that 
value. The wiring is quite complicated, but the behavior of the program is simple. First press the 
run button. Then press the OK button labeled "Start Heater and Pump." Immediately a curve 
appears on the waveform chart, but the heater and pump do not turn on, and the curve does not 
change. Press the same button again and the curve will step up to higher y values, then stop 
again. After a few clicks, the curve crosses the 0.5 mark on the y-axis as it is decreasing and the 
heater and the pump turn on.

What I wanted was a sine signal that would be continuously generated and displayed on 
each iteration of the while loop after you press OK. Instead, in this program a signal is generated 
only once each time you press the OK button.

What went wrong? The problem is with the event structure, which executes only once in 
response to an event. When you first press the OK button, the "Start Heater and Pump" case 
executes once. That means the case structure with the "Simulate Signal" function gets a true 
value on one iteration of the while loop from a true constant wired through the event structure to 
the case structure. After the event case has executed once, the true constant is no longer wired 
to the case structure. Only when you press OK again is the true constant wired to the case 
structure. So the "Simulate Signal" function simulates one value change, from 0 to approximately 
0.58, when you first press OK. Because the new value is greater than 0.5, the pump and heater 
do not turn on. Each additional click on OK simulates one more value change, and when the 
curve passes the 0.5 mark, the new value is less than 0.5, so the heater and pump turn on. I tried 
moving the functions around, but as long as I used an event structure, the buttons would only 
work once after being pressed.

Held up by SubVIs

At last I decided that the buttons I needed would not work with an event structure. Then I 
remembered radio buttons; they are in plain sight on the Boolean subpalette on the Controls 
palette, but I had not thought of using them before. I put a "Radio Buttons" control on the front 
panel of "Heater Control with Radio Buttons.vi" and wired it to a case structure on the block 
diagram. When that worked, I added buttons with a case for each button and changed the 
appearance of the buttons to look like the buttons I had made before. I put my "Simulate Signal" 
and comparison functions in the while loop. They would no longer need to wait for an event to 
happen before executing. I wired the comparison functions through the "Start Heater and Pump" 
case to the case structures, and as I had done with the event event structure, so I did with the 
case structure, adding true constants wired to the bottom case structure on the right and numeric 
controls wired to the "Milliseconds to Wait" function to determine how long the delay should be.

But when I started the program and clicked "Start Heater and Pump," strange things 
happened. The heater and pump would turn on, and the curve on the graph would move up from 
zero through the y values rather quickly until it reached 0.5, when the indicator lights would turn 
off as they were supposed to. But several seconds would go by before the outlets in the 
netBooter turned off, and when they did go off, they went off at the same time rather than with a 
delay between them. Meanwhile, when the curve reached 0.5 it would slow to a crawl. It moved, 
stopped for a while, moved again, stopped for a while, and upset my expectations of success.

I decided that something was slowing the program down, so I added a button and labeled 
it "Dummy Button" (later renamed "Default Button") to see what would happen if the case 
structure wired to the radio buttons were empty. When I clicked on the dummy button, the graph 
went faster than it had even when the top right case structure had been true. After that I 
suspected that both of the case structures were slowing things down, but the bottom one was 
doing it the most. However, I was very puzzled that the indicator lights would respond just as they 



should but the subVIs were not working even though they were in the same structures as the 
Boolean constants and local variables for the indicator lights.

I suspect that the subVIs, smiley.vi, Outlet 1 Off.vi, and Outlet 2 Off.vi, are what slowed 
down the program. I used case structures frequently, and only the ones with the subVIs slowed 
down the program. When I wired Boolean indicators through a case structure, for example, the 
graph on the waveform chart looked like it did with the Default Button on. Because the indicator 
lights always worked on time, we may conclude that the case structure and its contents were 
working right except for the subVIs.

There are a couple of other things that need explaining in this VI. The Milliseconds to 
Wait function with the numeric constant 5000 wired to it is a much later addition. After I had tried 
various ideas that did not work, Ann Marie suggested that I increase the time between iterations 
of the while loop from 1 ms to some longer period. With the long delay, the heater and pump 
turned off separately as desired, but the graph was quite slow. The Boolean indicator lights "High 
Temperature" and "Low Temperature" (later renamed "On Case" and "Off Case") were originally 
connected with another attempt to use an event structure, which I will explain shortly. My last 
versions of the program, which display the signal changing rapidly as well as turning the devices 
on and off with the delay between them, also depend on these indicator lights.

Back to the Event Structure

My next idea can be seen, though greatly changed from the original, in "Events for Heater 
Control.vi" and "Copy of Events for Heater Control.vi." I had been reading one of the National 
Instruments discussion threads; it was titled "Programmatically detect a value change event." This 
thread strongly influenced my strategy. By this time I realized that the case structures containing 
the subVIs, the Boolean constants, the time delay, and the local variables were executing on 
each iteration of the while loop and that they were slowing the program down. I decided to try to 
use an event structure so that these case structures would get a true constant only on one 
iteration of the while loop.

"Events for Heater Control.vi" most clearly shows how I tried to use the indicators and the 
event structure. Originally everything inside the two while loops was in one big while loop. The 
Boolean indicator lights High Temperature and Low Temperature respond to the same values, 
true and false, as the case structures on the right do. In the "Edit Events" dialog box (accessible 
throught the event structure shortcut menu if you click "Add Event Case" or "Edit Events Handled 
by this Case") the indicators High Temperature and Low Temperature appeared on the list of 
event sources, and on the list of events was one called "Value Change." Therefore it seemed that 
I could add events for when the indicators changed from true to false or false to true. When the 
indicator changed value, an event case would execute. I wired the event case so that the case 
structures would get a true or false value from the comparison functions or from true constants in 
the cases for the radio buttons. However, the event cases never executed as I had hoped. It is 
hard to remember what happened, but I think that when the program was running, if you clicked 
"Start Heater and Pump" the graph would display one movement of the sine signal and then stop 
until you clicked again. The outlets for the heater and pump would turn on only on the third click 
even though the signal had started at a value less than the benchmark for turning them on. I think 
the event structure was making all the code wait for an event before executing. I had hoped that 
everything would execute except what needed an output from the event structure, but that was 
not what happened.

As for the event cases associated with the High and Low Temperature indicators, I have 
many questions in mind. I don't know whether there is a value change when you first click the 
start button. What would the value of the indicator be before you click the start button? 
Somewhere online I read that the event structure requires direct user interaction with the front 
panel. I interpreted the statement to mean that you have to click on a control to produce an event. 
If that is true, the value change of an indicator light would not be a valid event. However, in the 
"Edit Events" dialog box, the indicators were listed as event sources! Why would they be there if 
they couldn't cause an event? The same article noted an exception to the requirement for 
interaction with the front panel: you can set up a User Event. I found the palette, but I was unable 
to wire the functions correctly to create a user event that I wanted.



In "Events for Heater Control.vi," the event cases for the indicator lights have true 
constants wired to the case structures no matter which way the value of the indicator lights 
changes. Thus, if they were true and become false, the event case would still deliver true 
constants to the case structures. I suppose I was assuming that the water would be at a low 
temperature and that when you press "Start Heater and Pump" the value of the "Low 
Temperature" indicator would change from false to true. Then the heater and pump would turn on. 
Afterwards, in the Start Heater and Pump case, the devices would never turn on unless the water 
crossed the low temperature, and they would never turn off unless it crossed the high 
temperature. And they would always turn on at the low crossing, whether the temperature was 
rising or falling, and off at the high crossing. So they would never turn on while going above the 
high temperature or off while going below the low temperature. But we don't want the heater and 
pump to turn on again after the water cools from the high temperature. I had thought at the time 
that we would keep the water between the low temperature and the high temperature for a while.

I considered alternatives to the value change events. One possibility was to use 
conditional disable structures to disable the case structures on the right after they had recieved a 
true or false value on one iteration until another click on a control or a value change. However, 
apparently the conditional disable structure has conditions for what operating system you are 
using and not for what happens with controls and functions in a program. I won't say that 
something is impossible though, only that I did not know how to do it. And the conditional disable 
structure sounds very much like what I wanted. I considered the Diagram Disable structure also. 
It might have been possible to use it somehow. There is one Enabled case and the rest are 
disabled. Let the enabled case be the case structure when the first true or false value arrives, and 
let the disabled case be the case structure if the next values are the same. But cases are easier 
said than done.

After working with event structures for some time without success, I tested the theory that 
the case structures with subVIs were slowing the program down. In "Separated.vi," I substituted 
Boolean indicator lights for the case structures wired to the radio buttons case structure. I had the 
indicators inside the while loop, and I wired Boolean push buttons to the case structures with the 
subVIs. The push buttons' operation was set to "Latch when released," meaning that they would 
give a true value once rather than on every iteration after a mouse click on the button. When I ran 
the program, the indicators lit up at once when the comparison functions were true and stayed lit, 
but the graph always went as fast as it did with the Dummy/Default radio button. I believed that 
proved that the subVIs in the case structures were to blame for the slow graph, reasoning that the 
indicators were getting a true value on every iteration but didn't slow anything down. When I 
clicked on the push buttons, the graph slowed or paused just for a moment, then resumed as fast 
as before. The outlets turned on and off as they were supposed to, and the time delay worked. So 
the fast repetitions of the true value were what caused the subVIs in the lower case structure to 
turn off the heater and pump at the same time after a pause. Later after I had read something 
online about parallel while loops, while trying to pass data from one while loop to another I put the 
Boolean indicators outside the while loop to see if they would light up when I ran the program. 
They did not, so the Boolean values were not making it out of the while loop.

Success with Parallel Loops and Shift Registers

There was a National Instruments LabVIEW tutorial that explains parallel loops, and I 
followed the directions, as you can see in "Parallel Loops.vi." The tutorial is in my folder (Ben 
Willis). It is named "Tutorial on Variables and Race Conditions." You can find it online; the title is 
"Tutorial: Local Variable, Global Variable, and Race Conditions." You should study it also and 
follow the directions to make the VI they describe. It will help you to understand parallel loops and 
local variables. The great thing about parallel loops is that one can execute without waiting for the 
other. The tutorial explains that you have to be careful to avoid race conditions, but otherwise 
parallel loops are a great idea. This tutorial was where I found out about the "Reinitialize Values 
to Default" item on the front panel Edit menu. It has been invaluable in my later VIs.

Now that I knew you can pass data between while loops using local variables, I did it a 



lot. Local variables are associated with front panel controls. In "Local Variable Foray.vi," I wired 
Low and High Temperature Boolean indicators to the comparison functions and created local 
variables for them. I changed them from Write to Read with a shortcut menu item and put them in 
the other while loop. I also created a local variable for the radio buttons and wired it to a case 
structure. The local variables read the values from their controls and pass them on to the case 
selector of the case structure (Radio Buttons) or through the case "Start Heater and Pump" (Low 
and High Temperature).

This VI worked better than any of the previous ones. The graph went as fast as I could 
wish, no matter whether the temperature was high or low. At first the outlets turned off at the 
same time after a delay. But following Ann Marie's suggestion I increased the delay between 
iterations of the while loop on the right to 5000 ms, and then the outlets turned off with the delay 
between them. There was a still a delayed response to a value change in the left while loop, 
though, because the right one had to wait a few seconds before iterating. I'll leave it to someone 
else to decide if a few seconds would matter. This VI would keep the temperature between the 
minimum and maximum rather than heating it up once and letting it cool. It could probably be 
changed, however, to behave as desired.

In this file there is a numeric control wired to the Milliseconds to Wait function in the flat 
sequence structure. Sometimes I had different numeric controls in each stop case of the radio 
buttons case structure so that each case would have a unique delay. In my final VIs this is so. But 
in some of the VIs I had the time delay control or constant in other places for testing whether a 
different position would work or to save time. It takes a little while to put one in each case and 
wire it to Milliseconds to Wait.

For some time I had been wondering whether shift registers would enable the program to 
send only one true value to the case structures with the subVIs for turning the outlets on and off. 
Shift registers can pass data from one iteration of a while loop to the next iteration. I tried to do 
this in "Shift Registers.vi" and "Radio Buttons with Shift Registers.vi," but neither attempt 
succeeded. Finally I found another NI tutorial, "Tutorial: Timing, Shift Registers, and Case 
Structures." I followed the directions from the tutorial in "Shift Register Tutorial.vi." I strongly 
recommend this tutorial for learning about shift registers. I have saved the file by the same name, 
except for the colon, in my folder.

Where to Put the Local Variables.vi

After studying the shift register tutorial, I tried shift registers again in "Where to Put the 
Local Variables.vi." I used two local variables for each of the High and Low Temperature 
indicators. Two of the local variables are in the false cases of the case structures wired to the 
"Equal?" comparison functions in the while loop on the right. The two others are not in any 
structure but the while loop. I will begin my explanation with reference to the High Temperature 
and Low Temperature local variables outside the case structures but inside the right while loop.

The program should not be run, and it usually will not run either, without clicking 
"Reinitialize Values to Default" on the front panel Edit menu. Once that is done, the radio buttons 
return to their default state, with the Default button on, and the High and Low Temperature 
indicators are set to their default state, which is false. Then when you click the run button the 
program runs with the Default button on, and in the case structure for the radio buttons in the left 
while loop, the Default Button case is selected. Because there are no wires through the Default 
Button case, the High and Low Temperature indicators are still false.

When you click "Start Heater and Pump," however, the case changes to the Start Heater 
and Pump case. In this case the indicators are wired to the comparison functions that tell whether 
the simulated signal (which we might as well imagine as the temperature of the water tank) is less 
than or equal to one value or greater than another value. Supposing that the signal is less than or 
equal to the smaller value, the Low Temperature indicator becomes true. 

In the other while loop on the right, a local variable for Low Temperature reads the new 
true value from the indicator and outputs it to the right terminal of a shift register (a small green 
box with a green up arrow on the right border of the while loop). On the next iteration, the left 
terminal of the shift register (with a small green down arrow) outputs the true value from the first 
iteration to the "Equal?" comparison function.



On the first iteration with the true value, the Low Temperature variable also outputs the 
true value to the "Equal?" function, where it is compared with the value from the previous iteration 
supplied by the shift register. Because the first true value does not equal the value before it, the 
"Equal?" function outputs a false value to the case structure to which it is wired. Then the false 
case executes. In it, another Low Temperature local variable reads the true value of the indicator 
and outputs the true value through a wire to a case structure that should be familiar by now, 
turning on the outlets for the heater and the pump and the indicator lights "Heater On" and "Pump 
On." 

On the second iteration after the Low Temperature indicator becomes true, the Low 
Temperature variable reads the true value and outputs it to the shift register and the "Equal?" 
function. But the shift register outputs the true value from the first true iteration to the "Equal?" 
function so that it is comparing equal values and becomes true. The "Equal?" function outputs a 
true value to the case structure, and the empty true case executes. Therefore the case structure 
with the subVI for turning on all outlets does not get another true value. On subsequent iterations, 
as long as the Low Temperature indicator is true, the "Equal?" function remains true, and nothing 
happens to the outlets. When it becomes false, nothing happens either, because the false case is 
empty.

Suppose that after a while the High Temperature indicator becomes true. In the while 
loop on the right, a High Temperature variable reads the true value and outputs it to a second 
shift register and to an "Equal?" function. The shift register outputs the value from the previous 
iteration to the "Equal?" function, and because the values are not equal, the "Equal?" function 
outputs a false value to a case structure. The false case executes. Another local variable for High 
Temperature reads the true value from the indicator and outputs it to the case structure with the 
subVIs for turning off the outlets.

If the High Temperature variable were to read a second true value, it would output it to the 
shift register and the "Equal?" function. At the "Equal?" function it would be the same as the true 
value from the previous iteration, the empty true case of the case structure would execute, and 
nothing more would happen.

However, in this VI the High Temperature variable never reads a second true value. This 
is because the High Temperature variable in the false case of the case structure is also wired to 
the conditional terminal of the while loop (a small reddish orange stop sign shape in a yellow 
square), which is set to "Stop if True." So when that variable becomes true, the right while loop 
stops, leaving the outlets off. I made this wiring because I realized that we need to raise the water 
to a certain temperature, then let it cool rather than keeping it between the two temperatures.

Whenever the High Temperature indicator becomes true, the right while loop stops and 
won't run again until the program is stopped and run another time. When you press any of the 
stop buttons, High Temperature becomes true (so High Temperature is not the best name for it, 
and I changed it in another version of the program) and the right while loop stops. You can start it 
again only by clicking "End Bending" to stop the program (or Abort Execution, but you should 
avoid clicking Abort) and running it after clicking "Reinitialize Values to Default." 

I needed a time delay in turning off the outlets. I made a local variable for Radio Buttons 
and wired it to a case structure in the right while loop. Depending on which radio button is on, one 
of four numeric controls with certain default values is selected in the case for the button and wired 
to the Milliseconds to Wait function in the flat sequence structure. Thus the delay is 
accomplished.

Local Variables and Stop Buttons that Work Right.vi

In "Local Variables and Stop Buttons that Work Right.vi," I made some improvements, but 
the VI does not work as I had wanted it to. It does seem to work as well as "Where to Put the 
Local Variables.vi." One improvement that succeeded was the label change of the "Low 
Temperature" and "High Temperature" indicators to "On Case" and "Off Case." As we have seen, 
the High Temperature indicator did not always indicate high temperature; it sometimes meant that 
a stop button was on. The "Start Heater and Pump" button is also mislabeled because it starts 
them only if the water is less than or equal to a certain temperature, but I couldn't think of a better 
name for it. 



What I really wanted to do in this file was to enable the stop buttons to be operated 
without stopping the right while loop while retaining the feature of stopping this while loop if the 
water temperature exceeded the maximum value. The "End Bending" button would stop both 
while loops. (There is a problem with having "End Bending" stop both while loops. If the outlets 
were on when the while loops stopped, they would remain on and the heater and pump would 
keep running after the program was shut down. Therefore, if the heater and pump are on and you 
want to stop the program, you need to click one of the stop buttons first, then "End Bending.")

I kept the wiring for the "On Case" the same as in "Where to Put the Local Variables.vi," 
but I changed the wiring for the "Off Case" or Low Temperature local variable. Between the 
"Equal?" function and the case structure I added an "And" function that is true if two conditions 
are true. I wired a Radio Buttons variable to one terminal of a shift register and another "Equal?" 
function and wired the other terminal of the shift register to the other input of the "Equal?" 
function, then wired the output terminal of the "Equal?" function to an "And" input terminal. 

If both the radio buttons and the Off Case indicator were the same as on the previous 
iteration, the "And" function would output "true" to the case structure and the empty true case 
would execute. But if either the radio buttons or the Off Case indicator value changed, "And" 
would output "false" to the case structure and the false case with the local variable "Off Case" 
would execute and turn off the outlets if the variable read a true value from the "Off Case" 
indicator. If this false case executed while the "Start Heater and Pump" button was on, the "Off 
Case" variable would be wired through two case structures to the conditional terminal of the while 
loop. So if the water exceeds the maximum temperature, the heater and pump will go off and not 
come on again during the same run of the program. But if any other radio button is on, the "Off 
Case" variable would not be wired to the conditional terminal.

I kept the case structure with the Time Delay controls and put the wire to the conditional 
terminal through the "Start Heater and Pump" case. I made another case structure and wired it to 
a local variable for the "End Bending" button (which is not one of the radio buttons). If you click 
"End Bending," it becomes true and both while loops will stop. In the right loop the true case with 
a true constant wired to the conditional terminal will execute. If you run the program while "End 
Bending" is true, it will go for one iteration and stop. To run the program properly, you need to 
"Reinitialize Values to Default."

As long as "End Bending" is false the case structure will be false, and a wire is connected 
to the conditional terminal through the case structure. This wire is to stop the while loop if the 
"Start Heater and Pump" button is on and the temperature exceeds the maximum value.

Button Peculiarities

The VI "Local Variables and Stop Buttons that Work Right.vi" may be good enough for 
our purposes, but it could be improved. When you run the program with the simulated signal, the 
signal value begins at zero and increases. If you click "Start Heater and Pump" before the signal 
value is greater than 0.2 (or whatever value is selected by the "Minimum Temperature" numeric 
control), the outlets for the heater and pump turn on. Then if you click on any of the stop buttons, 
the outlets turn off with a time delay between them. If you click again on "Start Heater and Pump," 
the outlets do not turn on again even though the signal value may still be less than or equal to 
0.2. 

Rewired Local Variables and Stop Buttons.vi

Actually, they aren't rewired. I thought I had a new idea, but then I changed my mind. If 
someone else wants to try something different, go ahead and rewire them.

Thermocouple Signal Attempt.vi

This VI is the same as "Local Variables and Stop Buttons that Work Right.vi" except that I 



replaced the "Simulate Signal" function with the functions that I had intended to measure the 
thermocouple voltage and convert it to temperature.

Work on Waveform Display.vi

This VI is the same as "Local Variables and Stop Buttons that Work Right.vi" except for 
the waveform chart and the waveform graph. My previous VIs had a waveform chart wired to the 
"Simulate Signal" function that would display the signal value over the past tenth of a second. Jim 
wanted a graph of the signal over the entire program run time, and he wanted to have the time 
and temperature data automatically saved in a file as the program was running.

After my success with shift registers, I began to work on the graph we wanted, but I did 
not have time to do much. I added a waveform graph labeled "Temperature During Entire Run 
Time" and wired it to the "Simulate Signal" function. I read an article in the NI LabVIEW 
Knowledge Base titled "What Is the Difference Between Graphs and Charts in LabVIEW?" The 
article says that a waveform graph accepts arrays of data and displays them after it has received 
the entire array but that a waveform chart "remembers and displays a certain number of points by 
storing them in a buffer." But when I first ran the program with both the graph and the chart wired 
to "Simulate Signal," they looked the same to me.

I made some kind of change to the waveform chart labeled "Temperature," and now it 
shows straight diagonal lines moving across the display from left to right when you run the 
program. I don't remember what caused that unhelpful change. Perhaps the best solution would 
be to delete the chart, replace it with another by the same name, and change the time display on 
the x-axis as I describe below. 

When I first added the waveform chart, it did not show the time on the x-axis. Sometime 
later I unchecked the item "Ignore Time Stamp" on the chart's shortcut menu, and it showed the 
time after that. However, it only showed the time in seconds. It would be better to show the time in 
hours, minutes, and seconds. In the "Format and Precision" tab of the Graph Properties dialog 
box I found the option HH:MM:SS for displaying the time and selected it. The time became more 
comprehensible. We won't have to figure out how long 7000 seconds is. 

I wanted to make the Waveform Graph display the temperature over the entire run time. I 
thought that if I put the graph outside the while loop it might be forced to do that, so I tried it. But 
now the graph waited till the program was stopped to display data, and it still displayed only the 
values over the past tenth of a second. 

I did my work on this file on a Wednesday. The next day we had our research group 
meeting, and Dr. Jones said I should write this report before I leave for classes in the fall 
semester. Someone else must carry on and make an adequate graph and file saving capability.

Final Experiments

I wrote my report, but I wanted to stay until 5:00, so I decided to experiment with a 
waveform chart until then. I copied "Work on Waveform Display.vi" to a new folder (C:\Documents 
and Settings\Jim\My Documents\Ben Willis\Final Experiments) and looked for example VIs 
(available from the Getting Started window) that would show how you can use graphs and charts. 
None of them had what we need. Then I did some searches online. I found a Graphs wiki that I 
saved in the new folder and a thread on the NI discussion forum called "How to view the curve of 
the past on Strip Chart?" 

I decided to see if a strip chart would display all the data since the program began 
running, so on the shortcut menu for the waveform chart I changed the update mode to strip chart 
(Advanced>Update Mode>Strip Chart). However, the chart shows the data only over a five-
second interval. I tried multiplying the chart history length by 100, but that didn't change the 
display either. The update modes may be worth investigating, though. I renamed my last file "Strip 
Chart.vi."



Perplexed by Thermocouples

We were planning to use a type J thermocouple to measure the water temperature in the 
fish tank for bending the fibers. The type J thermocouple is a junction of two metals: iron and 
constantan (an alloy of copper and nickel). Dr. Jones asked me to study information on 
thermocouples and report my findings at a research group meeting. I read a number of web 
pages and found out some things. Some of the articles are saved as files on Jim's computer in 
C:\Documents and Settings\Jim\My Documents\Ben Willis\Thermocouples. I read the document 
"Making Temperature Measurements using Measurement Computing DAQ Products," which was 
published by the manufacturer of the DAQ card we have. This article briefly explains the Seebeck 
voltage and several options for cold junction compensation.

Another article ("Criteria for Temperature Sensor Selection of T/C  and RTD Sensor 
Types: The Basics of Temperature Measurement Using Thermocouples, Part 1 of 3," published by 
Acromag, Inc.) corrected my understanding of thermocouples by emphasizing that the Seebeck 
voltage is caused by a temperature difference between junctions, not merely by a junction of two 
metals. 

One of the most helpful articles I read was an Application Note from the Dataforth 
Corporation titled "Introduction to Thermocouples." It explains that if there is a temperature 
difference between the ends of any wire made of a single metal, some electrons move from the 
hot end to the cold end. At the group meeting, Dr. Jones said the electrons move this way 
according to the Second Law of Thermodynamics. 

Another article ("Thermocouple Theory and Practice," published by the British company 
Labfacility) showed a similar simple situation, with two wires of different metals joined together at 
either end. A current would flow in these wires.

One of the difficulties of using thermocouples is that when the wires are different from the 
metal of the measuring device, they form junctions. If there is a junction at each terminal and the 
junctions are at the same temperature, they cancel each other with equal and opposite voltages 
("Making Temperature Measurements"). If you don't want these junctions at the measuring 
instrument, you can run wires from the instrument to an isothermal block and have the junctions 
there.

One of my main difficulties in studying thermocouples was to understand a voltage. 
Wikipedia gave a clear definition (but said there are other definitions): "A voltage is the energy 
required to move a charge from one point to another." I wanted to apply that definition to the 
thermocouple, so I wondered what the two points were. They could be any two points in the 
circuit. However, Wikipedia also said that the path between the points did not matter in 
determining the voltage, only the initial position and the final position, so some of the points in the 
circuit must not matter. In the end I concluded that the points that define the thermocouple voltage 
were at the terminals of the measuring instrument. But what if they were two other points, 
perhaps both inside the instrument or one in one wire and one in the other? Then you would 
measure different voltages in the same circuit.

In a loop made entirely of a single metal, no current will flow even though electrons may 
move from the hot end to the cold end. Dr. Jones said that this is because the charges are 
pushing on each other with equal force. At least, that's what I thought he said, and I took the idea 
and envisioned an answer to why there is a current in a loop of two metals with the junctions at 
different temperatures. From my reading I knew that the magnitude of the difference between the 
charges at either end of a wire with a temperature gradient depends on what metal the wire is. In 
a loop of two metal wires, a different number of electrons will move from the hot end to the cold 
end of each wire. That means that at each junction one metal will be more positive than the other 
metal. Electrons will flow from the less positive metal to the more positive metal. In other words, 
there will be a current in the wire. 

In stating this argument, I see a difficulty in it. At the hot junction, the electrons will move 
away from the junction in each wire, producing a positive charge in both metals at the junction. At 
the cold junction, they will move toward the junction in each wire. There will be a negative charge 
in each metal at the cold junction. But like charges repel each other, so wouldn't these charges 



push each other apart? In a wire, protons can't move, but electrons can. The negative charges, 
even though they are unequal, should drive each other apart. The electrons should move back up 
each wire toward the hot junction. What a conundrum! I shall have to take a physics course. 
Maybe that will help.


